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10 Godel’s incompleteness theorem

Proven by Godel in 1931, said for any sufficiently powerful system of formal-
izing arithmetic there is a formula not provable in this arithmetic: this is the
formula stating the the system does not prove a contradiction, a 0 = 1.

Proving that some formalization of mathematics is not self-contradictory and
can prove everything was part of Hilbert’s program. Around 1900, Hilbert
presented the list of 23 problems in mathematics that needed to be solved.
The second problem asked for a proof that arithmetic (theory of natural
numbers) is consistent. Several of the problems there can be stated in a
form of “prove jsomething;” or “find a method for solving jsomething;”,
which later was proven to be unprovable or unsolvable. For example, the
first problem was “prove or disprove Continuum Hypothesis”. Many are
resolved, some proven unsolvable, some, such as the Riemann Hypothesis
and Goldbach conjecture that every even integer can be written as a sum of
two primes are still open. A modern-day variant of Hilbert’s list is a list of 7
major problems in mathematic was given by Clay Institute “Millenium prize
problems” — they promised a million dollars per problem for solutions. One
of these problems, the Poincare Conjecture, was since resolved (by Grigory
Perelman); the rest remain open.
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10.1 Basic definitions of logical theories

A theory, formally, is a set of logical statements. But more often when we
talk about a theory we mean a set of axioms (may be infinite, but that can be
easily described) and all statements that logically follow from these axioms.
Axioms are logical statements that are assumed, and different theories can
take different assumptions: it can be that two theories contradict each other
on some assumption. A different way to compare theories is to look at all the
possible “worlds”, called models, in which axioms of theories are satisfied.

For example, Euclidean geometry can be viewed as everything that follows
from 5 postulates of Euclid. A model for such a geometry can be flat world
(planar geometry). If the 5th postulate of Euclid is replaced with another,
contradictory, statement (e.g., “all parallel lines intersect”) then a different
theory of geometry is obtained (Riemann’s geometry, which holds on the
surface of a sphere).

Zermelo-Fraenkel set theory is a another example of a theory: there, the
axioms describe basic properties of sets. Although ZFC can prove much
of mathematics, there are worlds (models) of ZFC in which the Continuum
Hypothesis (“is there a set A such that |N| < |A| < |R]|”) is true, and another
model in which it is false.

Which leads us to a definition of completeness: a theory is incomplete if
there is something that cannot be proven or disproven from the axioms of
this theory. Eucledian geometry without the parallel postulate cannot prove
or disprove this postulate; ZFC cannot prove or disprove the Continuum
hypothesis, so they are incomplete.

An example of a “complete” (but not too useful) theory is a theory which
has contradictory axioms, so it proves falsiness. Since F' — ¢ for any ¢,
from a false statement one can prove anything. Such theories, that can prove
falsiness, are called inconsistent: the “good” theories, that don’t contain a
contradiction, are consistent.

Gdel’s incompleteness theorems state, loosely, that a powerful enough theory
of arithmetic cannot both be consistent and complete (and, moreover, cannot
prove its own consistency unless it is inconsistent).
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One theory that reasons about natural numbers and satisfies the conditions
of Godel’s incompleteness theorems is Peano Arithmetic. It contains axioms
defining basic properties of numbers (such as Vo z+1 > 0) and an induction
axiom scheme. Induction scheme consists of infinitely many axioms of the
form (¢(0) AVz(o(z) — ¢z + 1)) — Yap(z), one for each possible formula
¢. You can see that although there are infinitely many axioms, the theory
can still be easily (efficiently) described.

As you know, numbers can be defined from sets and their properties proven
from properties of sets. So Peano Arithmetic is weaker than than ZFC (con-
sistency of PA can be proven in ZFC).

10.2 Proving Godel’s incompleteness theorem

Example of a theory of arithmetic: Peano Arithmetic. This was the kind of
theory for which Hilbert wanted to prove the consistency.
e Equality is transitive.

e Natural numbers are recursively defined starting from 0 and adding 1
at each step of the recursion. Here, instead of “41” sometimes people
use the “successor” operation: S(z) = x + 1.

e For any z, x +1 > 0 (can also be written as S(z) > 0).
e Induction works: if ¢(0) holds and Vi, ¢(i) — ¢(i + 1) then Vn, ¢(n).

e Addition and multiplication satisfy algebraic axioms: a+b = b+ a and
so on. Addition is defined using successor as a + S(b) = S(a +b).

a < bis a total order.

A model of a theory is a set and interpretations of functions that satisfy
the axioms. For example, Euclidean geometry without the parallel lines
axiom has different models. E.g., a Mobius strip is not a model of Euclidean
geometry, but it is a model of geometry without the fifth postulate.Riemann
and Lobachevsky geometries.
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A standard model of Peano arithmetic is natural numbers with the usual
=, +,* and so on on them.

Theorem 1 (Godel’s incompletenes theorems). 1) Any effectively gener-
ated theory which can express elementary arithmetic cannot be both
consistent and complete.

2) Any such theory cannot prove the statement stating its own consistency
(unless it is inconsistent and so can prove everything).

Idea of the proof of the first incompleteness theorem: construct a sentence G:
“I am not provable”. How do you say “I am” in arithmetic? The idea that
the formulas can be enumerated (do a countability argument here). This
technique is called arithmetization. Here, we end up saying “¢ is a formula
number n”, where ¢ says “formula number n is not provable”.

Godel’s numbers: a formula is a sequence of symbols xqz9, x3...2,, (for exam-
ple, view each symbol as a byte). Then G(zy ...x,) = 2°* - 3" - p*» where p,
is the n'* prime number. Godel uses this idea both to encode a formula as a
number and a sequence of formulas (i.e., a proof) as a number.

Since a relation between formulas and proofs becomes a relation between
two numbers, can define a formula Bew(y) = Jz(y is a Godel number of a
proof of the formula encoded by y). The name Bew comes from German
“Beweisbar” which translates as “provable”.Now look at —Bew(x). Then
the statement p <= —Bew(p) says, more or less, “p is a Gédel number
of an unprovable formula”, and thus p says “my Godel number is that of an
unprovable formula”.

For the intuition here, think of the two barbers who shave each other.
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