
CS 2742 (Logic in Computer Science) – Fall 2008
Lecture 7

Antonina Kolokolova

September 21, 2008

3 Resolution.

Recall that a formula is in the CNF (conjunctive normal form) if it is a ∧ of ∨s of literals
(variables or their negation.)

In this lecture we will talk about proving (or, actually, finding contradictions) statements
that are in this special form. As a warm-up exercise, let us see how to simplify CNF formulas
further.

Theorem 1. Any CNF formula is equivalent to a CNF formula with no more than 3 literals
in each clause.

Proof. Suppose some clause has more than 3 literals. Take the last two literals of the clause,
call them li and lj. Now, introduce new variable y which will have the same value as (li ∨ lj)
and replace (li ∨ lj) in the original clause containing (li ∨ lj) with y. To force y to have the
same value as (li ∨ lj, add clauses (y ↔ (li ∨ lj)), converted to CNF.

How do we convert (y ↔ (li ∨ lj)) to CNF? Use definition of ↔ and logical identities.

(y ↔ (li ∨ lj)) ⇐⇒ (y → (li ∨ lj)) ∧ ((li ∨ lj)→ y)

⇐⇒ (¬y ∨ li ∨ lj) ∧ (¬(li ∨ lj) ∨ y)

⇐⇒ (¬y ∨ li ∨ lj) ∧ ((¬li ∧ ¬lj) ∨ y)

⇐⇒ (¬y ∨ li ∨ lj) ∧ (¬li ∨ y) ∧ (¬lj ∨ y)

Example 1. (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2 ∨ x3 ∨ ¬x4). The second clause is replaced with
(¬x1 ∨ ¬x2 ∨ y) and added to the formula are (¬y ∨ x3 ∨ ¬x4) ∧ (¬x3 ∨ y) ∧ (x4 ∨ y).

18

Notice that what we do here is bringing a formula in a different (simpler?) form by adding
variables. But when we trying to determine if a formula is a tautology/contradiction, then
we want to remove variables rather than adding them: each added variable doubles the size
of the truth table. So we want to do the opposite: try to simplify the formula by getting rid
of some variables.

Definition 1 (Resolution rule). : Given two clauses of the form C∨x) and (D∨¬x), where
C and D are (possibly empty) disjunction of variables, can derive a (possibly empty) clause
(C ∨D).

That is,
(C ∨ x) ∧ (D ∨ ¬x)→ (C ∨D)

where C = (l1 ∨ · · · ∨ lk) and D = (l′1 . . . l′k′) for some literals. If there is a repeated literal,
only write it once.

Note that you may end up deriving an “empty” clause, that is, a ∨ of zero literals. But the
only way this could happen is when two clauses being resolved are (x) and (¬x). But x∧¬x
is always false, a contradiction. So deriving an empty clause proves that the original formula
was a contradiction (which is what we usually want to show).

Example 2. Consider the following statements:
p: it is sunny
q: the weather is good
r: I spend the day outside

Now consider the following argument:

p
p→ q
q → r
∴ r

We want to prove that this is a valid argument, that is, p, p → q and q → r together imply
r (this in general is called a transitivity law). Resolution proof method allows us to find
contradictions: so we represent this problem as a contradiction p ∧ (p → q) ∧ (q → r) ∧ ¬r.
Note that here again we are using the fact that the negation of an implication (in this case,
premises imply the conclusion) is a conjunction of premises and negation of the conclusion.

Resolution works with CNF formula, so the first step is to convert the formula above into
CNF. In this case, it is very easy: just apply the definition of implication to the second and
third clause to obtain p ∧ (¬p ∨ q) ∧ (¬q ∨ r) ∧ ¬r.

19

�

& �

@
@@

,
,
,

Q
Q
Q
QQ

�
�
��

XXXXXXXXX

�
�

�
�

�
��

p (¬q ∨ r) ¬r(¬p ∨ q)

(¬p ∨ r)q

¬p

()

Example 3. Let’s look at another example. Now there are only two variables, and the four
clauses contain all possible combinations (so the formula is a contradiction) (x ∨ y) ∧ (¬x ∨
y) ∧ (x ∨ ¬y) ∧ (¬x ∨ ¬y). You can easily see that any truth assignment to x and y falsifies
one clause.

b
b

bb

"
"
"
" b

b
bb

"
"

"
"

aaaaaaaa

!!!!!!!

(x ∨ y) (¬x ∨ y) (x ∨ ¬y) (¬x ∨ ¬y)

y ¬y

()

Resolution proof system is very powerful in that given any formula in CNF form it can check
whether it is a contradiction. However, resolution is not very efficient. Although it is much
more efficient in practice than using truth tables (for example, the (x1 ∧ (x1 → x2) ∧ (x2 →
x3) ∧ · · · ∧ (xn1 → xn) ∧ ¬xn can be done by a resolution proof system in n steps, whereas
the truth table would have 2n lines), there are examples of problems on which resolution
proof system has to explore all possibilities, and so is similar to the truth table method in
efficiency. The most prominent such example is the PigeonHole Principle, which says that
it is impossible to put n + 1 element (pigeon) into n places (holes) without two elements
getting into the same place. You needed to use this principle, this kind of counting reasoning
to solve the last lecture puzzle.

The resolution is still the most popular method of programming automated proof systems
because if its clarity and simplicity. However, when working with or programming such a
system keep in mind that resolution “can’t count”.

Puzzle 7. Somebody asked a logician: “is it true that if you love Beth, then you also love
Jane?”. He said: “If this is so, then I love Beth”. Does he love Jane as well?

20

