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10.1 Proving Gödel’s incompleteness theorem

Example of a theory of arithmetic: Peano Arithmetic. This was the kind of theory for which
Hilbert wanted to prove the consistency.

• Equality is transitive.

• Natural numbers are recursively defined starting from 0 and adding 1 at each step of
the recursion. Here, instead of “+1” sometimes people use the “successor” operation:
S(x) = x + 1.

• For any x, x + 1 > 0 (can also be written as S(x) > 0).

• Induction works: if φ(0) holds and ∀i, φ(i) → φ(i + 1) then ∀n, φ(n).

• Addition and multiplication satisfy algebraic axioms: a+b = b+a and so on. Addition
is defined using successor as a + S(b) = S(a + b).

• a ≤ b is a total order.

A model of a theory is a set and interpretations of functions that satisfy the axioms. For
example, Euclidean geometry without the parallel lines axiom has different models. E.g., a
Mobius strip is not a model of Euclidean geometry, but it is a model of geometry without
the fifth postulate.Riemann and Lobachevsky geometries.

A standard model of Peano arithmetic is natural numbers with the usual =, +, ∗ and so on
on them.

Theorem 1 (Gödel’s incompletenes theorems). 1) Any effectively generated theory which
can express elementary arithmetic cannot be both consistent and complete.
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2) Any such theory cannot prove the statement stating its own consistency (unless it is
inconsistent and so can prove everything).

Idea of the proof of the first incompleteness theorem: construct a sentence G: “I am not
provable”. How do you say “I am” in arithmetic? The idea that the formulas can be
enumerated (do a countability argument here). This technique is called arithmetization.
Here, we end up saying “φ is a formula number n”, where φ says “formula number n is not
provable”.

Gödel’s numbers: a formula is a sequence of symbols x1x2, x3...xn (for example, view each
symbol as a byte). Then G(x1 . . . xn) = 2x1 · 3x2 · pxn

n where pn is the nth prime number.
Gödel uses this idea both to encode a formula as a number and a sequence of formulas (i.e.,
a proof) as a number.

Since a relation between formulas and proofs becomes a relation between two numbers, can
define a formula Bew(y) = ∃x(y is a Gödel number of a proof of the formula encoded by y).
The name Bew comes from German “Beweisbar” which translates as “provable”.Now look
at ¬Bew(x). Then the statement p ⇐⇒ ¬Bew(p) says, more or less, “p is a Gödel number
of an unprovable formula”, and thus p says “my Gödel number is that of an unprovable
formula”.

For the intuition here, think of the two barbers who shave each other.
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