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10 Gödel’s incompleteness theorem

Proven by Gödel in 1931, said for any sufficiently powerful system of formalizing arithmetic
there is a formula not provable in this arithmetic: this is the formula stating the the system
does not prove a contradiction, a 0 = 1.

Proving that some formalization of mathematics is not self-contradictory and can prove
everything was part of Hilbert’s program. Around 1900, Hilbert presented the list of 23
problems in mathematics that needed to be solved. The second problem asked for a proof
that arithmetic (theory of natural numbers) is consistent. Several of the problems there can
be stated in a form of “prove ¡something¿” or “find a method for solving ¡something¿”, which
later was proven to be unprovable or unsolvable. For example, the first problem was “prove
or disprove Continuum Hypothesis”. Many are resolved, some proven unsolvable, some, such
as the Riemann Hypothesis and Goldbach conjecture that every even integer can be written
as a sum of two primes are still open. A modern-day variant of Hilbert’s list is a list of
7 major problems in mathematic was given by Clay Institute “Millenium prize problems”
– they promised a million dollars per problem for solutions. One of these problems, the
Poincare Conjecture, was since resolved (by Grigory Perelman); the rest remain open.

10.1 Basic definitions of logical theories

A theory, formally, is a set of logical statements. But more often when we talk about a
theory we mean a set of axioms (may be infinite, but that can be easily described) and all
statements that logically follow from these axioms. Axioms are logical statements that are
assumed, and different theories can take different assumptions: it can be that two theories
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contradict each other on some assumption. A different way to compare theories is to look
at all the possible “worlds”, called models, in which axioms of theories are satisfied.

For example, Euclidean geometry can be viewed as everything that follows from 5 postulates
of Euclid. A model for such a geometry can be flat world (planar geometry). If the 5th
postulate of Euclid is replaced with another, contradictory, statement (e.g., “all parallel
lines intersect”) then a different theory of geometry is obtained (Riemann’s geometry, which
holds on the surface of a sphere).

Zermelo-Fraenkel set theory is a another example of a theory: there, the axioms describe basic
properties of sets. Although ZFC can prove much of mathematics, there are worlds (models)
of ZFC in which the Continuum Hypothesis (“is there a set A such that |N| < |A| < |R|”)
is true, and another model in which it is false.

Which leads us to a definition of completeness: a theory is incomplete if there is something
that cannot be proven or disproven from the axioms of this theory. Eucledian geometry
without the parallel postulate cannot prove or disprove this postulate; ZFC cannot prove or
disprove the Continuum hypothesis, so they are incomplete.

An example of a “complete” (but not too useful) theory is a theory which has contradictory
axioms, so it proves falsiness. Since F → φ for any φ, from a false statement one can
prove anything. Such theories, that can prove falsiness, are called inconsistent : the “good”
theories, that don’t contain a contradiction, are consistent.

Gd̈el’s incompleteness theorems state, loosely, that a powerful enough theory of arithmetic
cannot both be consistent and complete (and, moreover, cannot prove its own consistency
unless it is inconsistent).

One theory that reasons about natural numbers and satisfies the conditions of Gödel’s in-
completeness theorems is Peano Arithmetic. It contains axioms defining basic properties of
numbers (such as ∀x x + 1 > 0) and an induction axiom scheme. Induction scheme consists
of infinitely many axioms of the form (φ(0) ∧ ∀x(φ(x) → φ(x + 1))) → ∀xφ(x), one for each
possible formula φ. You can see that although there are infinitely many axioms, the theory
can still be easily (efficiently) described.

As you know, numbers can be defined from sets and their properties proven from properties
of sets. So Peano Arithmetic is weaker than than ZFC (consistency of PA can be proven in
ZFC).
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