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6.1 Application to cryptography

Recall Caesar’s cipher: letter +3. Encode with Code(i) = Letter(i + 3) mod 26, decode
with Letter(i) = Code(i− 3) mod 26. Problem: seeing enough messages can figure out the
code, and knowing how to encode can easily decode.

6.1.1 Private-key cryptosystem

A natural way to make the system more secure is to apply a different rule for encoding each
letter. For that, the parties exchanging encoded messages can agree on a key (e.g., text from
a book) which they would “add” to the message to obtain the code. For example, the key
could be “here” and the message: “come”: the resulting code, using the same convention for
letters as before, could be h+c=k, e+o=t, r+m=e, e+e=j giving “ktej”. This code is much
harder to break, it is not possible to crack it without knowing the key. However, knowing
the key it is easy to decode: just subtract the key from the codeword mod 26. Beware,
though, that for a key to be really secure one should never reuse the same key to encode
several messages.And, of course, there is a problem of securely agreeing on the same key in
the first place.

It is much easier to think about this encoding when both the message and the key are
binary strings. Recall from the Boolean function part of the course that there is a function
“exclusive-or” (also called “XOR”), written as ⊕, which has the same truth table as ∨ except
1 ⊕ 1 = 0. That is, 0 ⊕ 0 = 1 ⊕ 1 = 0 and 1 ⊕ 0 = 0 ⊕ 1 = 1. Now, to encode a binary
string (say m = 101010) by a key (say k = 110011) it is enough to take a bitwise XOR of
them c = m⊕ k = 101010⊕ 110011 = 011001. Notice that ⊕ has a very useful feature: for
any binary string, an ⊕ of this string with itself is a string of all 0s. So doing an ⊕ with
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the same string twice “cancels out” that string. This gives a decoding algorithm: if c is a
codeword, then c⊕ k = m⊕ k ⊕ k = m.

It can be proven that it is impossible to distinguish a completely random string of 0s and
1s from such a string made by key ⊕ message, where key and message are binary strings.
Therefore, this encoding is secure (as long as the key is secure and only used to encode one
message: if the key is used repeatedly then it compromises the security).

6.2 Public-key cryptosystem.

Although private-key cryptosystem is very secure, it has some drawbacks, the main of which
is that the two parties need to exchange the keys beforehead in a secure way. But often in real
life two parties want to exchange messages securely without having a chance to communicate
privately before. For such a situation, a public-key cryptosystems were developed.

Intuitively, public-key cryptosystem works as follows. Suppose there are two people, call
them Alice and Bob, who want to communicate securely. In particular, suppose that Bob
wants to send a secure message to Alice. In public-key cryptography, Alice starts by gener-
ating a private key and a public key for herself. Private key she keeps secret; her public key
she publishes online. Now, when Bob wants to send Alice a message that only she can read,
he takes her public key and uses it to encode the message (in a different way than private-
key encoding). He sends the message to Alice, who now uses her private key to decode the
message.

The best known public-key cryptosystem is RSA (there are others, based on elliptic curves,
lattices and other complicated mathematical objects). Security of the RSA cryptosystem is
based on the assumption that given a product of two large prime numbers it is computation-
ally infeasible to factor it. Here, by “large” people usually mean 128-bit long (that is, of a
value up to 2128), or something similar. This assumption is challenged by the quantum com-
puters: it is indeed possible to factor numbers efficiently on quantum computers. However,
the current quantum computer technology only allows operations on very small numbers:
quantum computers available now can only operate with the total of about 16 bits.

RSA technology is based on the properties of mod n relation. Let us start by looking at
several ways of looking at mod n.

The following are equivalent ways to describe a ≡ b( mod n).

• n|(a− b)

• a = b + kn for some k

• a and b have the same nonnegative remainder divided by n
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• a mod n = b mod n.

In order to see how RSA works, we need to understand modular arithmetic: that is, how to
do operations mod n. Let a = c( mod n) and b = d( mod n). Then

• (a + b) ≡ (c + d)( mod n)

• (a− b) ≡ (c− d)( mod n)

• ab ≡ cd( mod n)

• am ≡ cm( mod n) for all positive m

An important object is an inverse of a number mod n: an inverse s of a modulo n is a
positive s such that as ≡ 1 mod n.

Finally, with these definitions we are ready to describe RSA cryptography:

• Take large primes p and q and an integer e relatively prime to (p− 1)(q − 1).

• The public key becomes pq and e

• Encrypt with C = M e mod pq

• Find d which is a positive inverse to e modulo (p− 1)(q − 1).

• Decrypt with M = Cd mod pq.

Take pq = 55, e = 3 – this is the public key. Message “HI” becomes 08, 09 and gets encoded
as 83 mod 55 = 17 and 93 mod 55 = 14, so the message becomes “17 14”.

To decrypt this message, Alice needs to compute d such that d is a positive inverse of e
modulo (p − 1)(q − 1). To compute the inverse, recall that if gcd(a,n)=1 then there exists
s such that as ≡ 1 mod n. Use Euclid’s algorithm to find the inverse. Don’t worry about
this until your discrete math course, if you don’t know this.

Why it works? Look at C = M e mod pq. Then M = (M e mod pq)d mod pq. So (M e

mod pq)d = M ed mod pq Thus suffices to show M = M ed mod (pq). But ed = 1 mod (p−
1)(q − 1). You would need to have some working knowledge of modular arithmetic to work
through the proof.
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