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Induct ion and 
loop invariants

 Domino Principle: Line up any number of 
dominos in a row; knock the f irst  one over 
and they will all fall.
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In algorithm analysis, we are interested 
in what happens for large input sizes. 
How do we prove that something is t rue 
for an arbitrary large n?  
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Induct ion: domino principle
In a row of dominos, 
If  the f irst  one falls
If  each domino falling  knocks the 
  next one 
Then all of them fall. 
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Induct ion

Statement to prove: for all n, P(n) holds.
 For exam p le, for  all n ,   sum  of the firs t  n  

elem ents  is  1+ 2+ ...+ n= n(n+ 1)/ 2

Base Case:
 P(0) hold s (or  P(1) hold s).
 For exam p le, P(1): 1= 1(1+ 1)/ 2= 1

Induction hypothesis:
 P(n) holds for some arbitrary n.
 1+ 2+ ...+ n= n(n+ 1)/ 2

Induction step.
 From the fact that P(n) holds we can derive that 

P(n+ 1) holds. 
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Induct ion Step

Induction step.
 From the fact that P(n) holds (and the base 

case) we can derive that P(n+ 1) holds. 
 From 1+ 2+ ...n= n(n+ 1)/ 2   derive 1+ 2+ ...+ n+ n

+ 1= (n+ 1)(n+ 2)/ 2
 Proof: by induct ion hypothesis, 
1+ ...+ n+ n+ 1= n(n+ 1)/ 2+ (n+ 1)
                      =  (n+ 1)(n+ 2)/ 2  
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Structure of induct ion 
proof 

Statement to prove: 
 For all n> k,  P(n ) is  t rue. 

Base Case:
 P(k) hold s  (usually P(0) or  P(1)).

Induction hypothesis:
 P(n) holds for some arbitrary n.

Induction step.
 Assuming P(n) holds derive that P(n+ 1) holds. 
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Another example 

Statement to prove: 
 For all n> 4,  n 2< 2 n . 

Base Case:
 P(5): 5 2= 25 <  2 5= 32

Induction hypothesis:
 Assume n 2< 2 n for n> 4

Induction step.
 Assuming n 2< 2 n   derive  (n+ 1)2< 2 (n + 1).
 (n+ 1)2= n2+ 2n+ 1 <  2n2 < 2 .2 n = 2 (n + 1)  

Statement to prove: 
 For all n> k,  P(n ) is  t ru e. 

Base Case:
 P(k) hold s.

Induction hypothesis:
 P(n) holds for some n> k.

Induction step.
 From P(n)  derive  P(n+ 1). 

Ind uct ion  hyp othesisBecause s ince n> 4,
n*n> 4n= 2n+ 2n> 2n+ 1
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Strong induct ion 

Statement to prove: 
 Sam e: for  all n> k, P(n ). 

Base Case:
 P(k), m aybe also P(k+ 1).

Induction hypothesis:
 Assume for all m< n P(m) holds.

Induction step.
 Assuming for all m< n P(m) holds, prove P(n).

 

Statement to prove: 
 For all n> k,  P(n ) is  t ru e. 

Base Case:
 P(k) hold s.

Induction hypothesis:
 P(n) holds for some n> k.

Induction step.
 From P(n)  derive  P(n+ 1). 

Aren 't  we assum ing the sam e th ing as  p roving?
 
We are p roving P(n ) everywhere, assum ing it  
on ly for  the firs t  several elem ents!
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Strong induct ion 

Statement to prove: 
 For all n , F(n )< 2 n  
 F(n ) is  n t h Fibonacci num ber

Base Cases:
 F(0)= 0< 1, F(1)= 1 < 2  

Induction hypothesis:
 Assume F(m)< 2m  for all m< n 

Induction step.
 Assuming induct ion hypothesis  derive  F(n)< 2 n.
 F(n)= F(n- 1)+ F(n- 2). By induct ion hypothesis, 

F(n- 1) <  2n- 1 and F(n- 2) <  2n- 2. 
 So F(n) <  2n- 1+ 2n- 2 <  2*2n- 1 = 2n

Strong Induction

Statement to prove: 
 For all n> k,  P(n ) is  t ru e. 

Base Case:
 P(k) hold s.

Induction hypothesis:
 P(m) holds for all m, k< m< n,

Induction step.
 From ind. hyp.  derive  P(n). 
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Algorithm correctness 

Precondition: something that 
is true before a part of an 
algorithm (e.g, a loop).  
 CurrentMax contains A[0]. 

Postcondition: something 
that is true after it finished 
running.
 CurrentMax contains the 

maximum element of A. 
Loop invariant: .  

 CurrentMax is the maximum 
of elements of A seen so far. 

Algorithm  arra y Ma x(A , n)
Input array A  of n  in tegers
Output m axim um  elem ent  of 

A

currentMa x ← A[0]
for i ← 1 to  n  − 1 do

if  A[i] > currentMa x then
currentMa x ← A[i]

return  currentMa x 
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Induct ion and  correctness 

Precondition: like base case.  
 CurrentMax contains A[0]. 

Loop invariant: if  true  at step i,  
still true after one more loop.
 If  currentMax contains the  

maximum of the A[0..i], and the � if �  
is executed, currentMax will 
contain the maximum of A[0..i+ 1]. 

Postcondition:  follows from loop 
invariant.  
 CurrentMax is the maximum 

element of A. 

Algorithm  a rra y Max(A , n)
Input array A  of n  in tegers
Output m axim um  elem ent  

of A

currentMa x ← A[0]
for i ← 1 to  n  − 1 do

if  A[i] > currentMa x 
then

currentMa x ← 
A[i]

return  currentMa x 
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Induct ion and  correctness 
Precondition: like base case.  

 CurrentMax =  A[0]. 
Loop invariant: if  true  at step i,  still true 

after one more loop.
 Suppose CurrentMax is the max of 

A[0..i- 1]. Two cases: 
 a) A[i]> CurrentMax. Then CurrentMax is 

the max of A[0..i] since it  is in the array 
(A[i]) and it  is the largest (> than 
previous).

 b) A[i] is not  >  than CurrentMax.  Then 
CurrentMax is the max of A[0..i] since it  
was the max of A[0..i- 1] and A[i] is not 
bigger.

By induct ion, t rue for all iterat ions including 
terminat ion.

Algorithm  a rra y Max(A , n)
Input array A  of n  in tegers
Output m axim um  elem ent  

of A

currentMa x ← A[0]
for i ← 1 to  n  − 1 do

if  A[i] > currentMa x 
then

currentMa x ← 
A[i]

return  currentMa x 
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Algorithm analysis 
If an algorithm is a sequence of (constantly 
many) parts, its running time is the maximal 
over running times of parts.  
 E.g., if  the algorithm sorts inputs in t ime O(n 

log n)  then looks at each one once in O(n), 
total t ime is O(max(n log n, n)) =  O(n log n). 

If an algorithm has k nested  loops, with n as 
a bound, then the running time is nk.
 First prefix average algorithm ran in t ime n2. 

If an algorithm makes n recursive calls each 
time calling itself twice, it is exponential. 
Calling itself once gives linear factor.  
 First and second Fibonacci algorithms. 


