
© 2004 Goodrich, Tamassia

Induct ion and
loop invariants

 Domino Principle: Line up any number of
dominos in a row; knock the f irst one over
and they will all fall.

© 2004 Goodrich, Tamassia

In algorithm analysis, we are interested
in what happens for large input sizes.
How do we prove that something is t rue
for an arbitrary large n?

© 2004 Goodrich, Tamassia

Induct ion: domino principle
In a row of dominos,
If the f irst one falls
If each domino falling knocks the
 next one
Then all of them fall.

 Analysis of Algorithms 4© 2004 Goodrich, Tamassia

Induct ion

Statement to prove: for all n, P(n) holds.
 For exam p le, for all n , sum of the firs t n

elem ents is 1+ 2+ ...+ n= n(n+ 1)/ 2

Base Case:
 P(0) hold s (or P(1) hold s).
 For exam p le, P(1): 1= 1(1+ 1)/ 2= 1

Induction hypothesis:
 P(n) holds for some arbitrary n.
 1+ 2+ ...+ n= n(n+ 1)/ 2

Induction step.
 From the fact that P(n) holds we can derive that

P(n+ 1) holds.

 Analysis of Algorithms 5© 2004 Goodrich, Tamassia

Induct ion Step

Induction step.
 From the fact that P(n) holds (and the base

case) we can derive that P(n+ 1) holds.
 From 1+ 2+ ...n= n(n+ 1)/ 2 derive 1+ 2+ ...+ n+ n

+ 1= (n+ 1)(n+ 2)/ 2
 Proof: by induct ion hypothesis,
1+ ...+ n+ n+ 1= n(n+ 1)/ 2+ (n+ 1)
 = (n+ 1)(n+ 2)/ 2

 Analysis of Algorithms 6© 2004 Goodrich, Tamassia

Structure of induct ion
proof

Statement to prove:
 For all n> k, P(n) is t rue.

Base Case:
 P(k) hold s (usually P(0) or P(1)).

Induction hypothesis:
 P(n) holds for some arbitrary n.

Induction step.
 Assuming P(n) holds derive that P(n+ 1) holds.

 Analysis of Algorithms 7© 2004 Goodrich, Tamassia

Another example

Statement to prove:
 For all n> 4, n 2< 2 n .

Base Case:
 P(5): 5 2= 25 < 2 5= 32

Induction hypothesis:
 Assume n 2< 2 n for n> 4

Induction step.
 Assuming n 2< 2 n derive (n+ 1)2< 2 (n + 1).
 (n+ 1)2= n2+ 2n+ 1 < 2n2 < 2 .2 n = 2 (n + 1)

Statement to prove:
 For all n> k, P(n) is t ru e.

Base Case:
 P(k) hold s.

Induction hypothesis:
 P(n) holds for some n> k.

Induction step.
 From P(n) derive P(n+ 1).

Ind uct ion hyp othesisBecause s ince n> 4,
n*n> 4n= 2n+ 2n> 2n+ 1

 Analysis of Algorithms 8© 2004 Goodrich, Tamassia

Strong induct ion

Statement to prove:
 Sam e: for all n> k, P(n).

Base Case:
 P(k), m aybe also P(k+ 1).

Induction hypothesis:
 Assume for all m< n P(m) holds.

Induction step.
 Assuming for all m< n P(m) holds, prove P(n).

Statement to prove:
 For all n> k, P(n) is t ru e.

Base Case:
 P(k) hold s.

Induction hypothesis:
 P(n) holds for some n> k.

Induction step.
 From P(n) derive P(n+ 1).

Aren 't we assum ing the sam e th ing as p roving?

We are p roving P(n) everywhere, assum ing it
on ly for the firs t several elem ents!

 Analysis of Algorithms 9© 2004 Goodrich, Tamassia

Strong induct ion

Statement to prove:
 For all n , F(n)< 2 n
 F(n) is n t h Fibonacci num ber

Base Cases:
 F(0)= 0< 1, F(1)= 1 < 2

Induction hypothesis:
 Assume F(m)< 2m for all m< n

Induction step.
 Assuming induct ion hypothesis derive F(n)< 2 n.
 F(n)= F(n- 1)+ F(n- 2). By induct ion hypothesis,

F(n- 1) < 2n- 1 and F(n- 2) < 2n- 2.
 So F(n) < 2n- 1+ 2n- 2 < 2*2n- 1 = 2n

Strong Induction

Statement to prove:
 For all n> k, P(n) is t ru e.

Base Case:
 P(k) hold s.

Induction hypothesis:
 P(m) holds for all m, k< m< n,

Induction step.
 From ind. hyp. derive P(n).

 Analysis of Algorithms 10© 2004 Goodrich, Tamassia

Algorithm correctness

Precondition: something that
is true before a part of an
algorithm (e.g, a loop).
 CurrentMax contains A[0].

Postcondition: something
that is true after it finished
running.
 CurrentMax contains the

maximum element of A.
Loop invariant: .

 CurrentMax is the maximum
of elements of A seen so far.

Algorithm arra y Ma x(A , n)
Input array A of n in tegers
Output m axim um elem ent of

A

currentMa x ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMa x then
currentMa x ← A[i]

return currentMa x

 Analysis of Algorithms 11© 2004 Goodrich, Tamassia

Induct ion and correctness

Precondition: like base case.
 CurrentMax contains A[0].

Loop invariant: if true at step i,
still true after one more loop.
 If currentMax contains the

maximum of the A[0..i], and the � if �
is executed, currentMax will
contain the maximum of A[0..i+ 1].

Postcondition: follows from loop
invariant.
 CurrentMax is the maximum

element of A.

Algorithm a rra y Max(A , n)
Input array A of n in tegers
Output m axim um elem ent

of A

currentMa x ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMa x
then

currentMa x ←
A[i]

return currentMa x

 Analysis of Algorithms 12© 2004 Goodrich, Tamassia

Induct ion and correctness
Precondition: like base case.

 CurrentMax = A[0].
Loop invariant: if true at step i, still true

after one more loop.
 Suppose CurrentMax is the max of

A[0..i- 1]. Two cases:
 a) A[i]> CurrentMax. Then CurrentMax is

the max of A[0..i] since it is in the array
(A[i]) and it is the largest (> than
previous).

 b) A[i] is not > than CurrentMax. Then
CurrentMax is the max of A[0..i] since it
was the max of A[0..i- 1] and A[i] is not
bigger.

By induct ion, t rue for all iterat ions including
terminat ion.

Algorithm a rra y Max(A , n)
Input array A of n in tegers
Output m axim um elem ent

of A

currentMa x ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMa x
then

currentMa x ←
A[i]

return currentMa x

 Analysis of Algorithms 13© 2004 Goodrich, Tamassia

Algorithm analysis
If an algorithm is a sequence of (constantly
many) parts, its running time is the maximal
over running times of parts.
 E.g., if the algorithm sorts inputs in t ime O(n

log n) then looks at each one once in O(n),
total t ime is O(max(n log n, n)) = O(n log n).

If an algorithm has k nested loops, with n as
a bound, then the running time is nk.
 First prefix average algorithm ran in t ime n2.

If an algorithm makes n recursive calls each
time calling itself twice, it is exponential.
Calling itself once gives linear factor.
 First and second Fibonacci algorithms.

