‘Induction and
loop Invariants

AN

Domino Principle: Line up any number of
dominos in arow; knock the first one over
and they will all fall.
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In algorithm analysis, we are interested

IN what happens for large input sizes.
How do we prove that something is true

for an arbitrary large n?
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Induction: domino principle
In a row of dominos,

*If the first one falls

*If each domino falling knocks the
next one

*Then all of them fall.
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Induction

N

L

# Statement to prove: for all n, P(n) holds.

" For example, for all n, sum of the first n
elementsis 1+2+..+n=n(n+1)/2

# Base Case:

= P(0) holds (or P(1) holds).

" For example, P(1): 1=1(1+1)/2=1
# Induction hypothesis:

" P(n) holds for some arbitrary n.

" 1+2+...+n=n(n+1)/2
# Induction step.

" From the fact that P(n) holds we can derive that
P(n+ 1) holds.
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Induction Step

N
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# Induction step.

®" From the fact that P(n) holds (and the base
case) we can derive that P(n+ 1) holds.

" Ffrom 1+2+..n=n(n+1)/ 2 derive 1+ 2+ ...+ n+n
+1=(n+1)(n+2)/2

= Proof: by induction hypothesis,
1+...+ntn+1=n(n+1)/2+(n+1)
" = (n+1)(n+2)/2
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Structure of inductio
proof

# Statement to prove:
= For all n>k, P(n)istrue.

# Base Case:
" P(k) holds (usually P(0) or P(1)).
# Induction hypothesis:
®" P(n) holds for some arbitrary n.
# Induction step.
= Assuming P(n) holds derive that P(n+ 1) holds.
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Another example

N
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# Statement to prove:

" For all n>4, n?<2".
# Base Case:

" P(5): 52=25 < 25=32
# Induction hypothesis:

= Assume n2<2" for n>4
# Induction step.

e

‘@' Statement to prove:
®= For all n>k, P(n)istrue.
@ Base Case:
= P(k) holds.
Induction hypothesis:
®=  P(n) holds for some n>Kk.

@ Induction step.
"  Fom P(n) derive P(n+1).

= Assuming n?< 2" derive (n+1)’<20+h),

" (n+1)°=n°+2
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Because since n>4,
N*N>4n=2n+2n>2n+1

Analysis of Algorithms

220 =20+ 1)

Induction hypothesis




e

‘@' Statement to prove:
®= For all n>k, P(n)istrue.

# Statement to prove: @ Base Case:
= Same: for all n>k, P(n). e e
# Base Case: PY e e erseme T
" P(k), maybe also P(k+ 1). " From P(n) derive P(n+1)
# Induction hypothesis:
= Assume for all m<n P(m) holds.
# Induction step.
= Assuming for all m<n P(m) holds, prove P(n).

Strong induction

N

L

Aren't we assuming the same thing as proving?

We are proving P(n) everywhere, assuming it
only for the first several elements!
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Strong Induction

Strong induction

N

i -@ Statement to prove:
# Statement to prove. =  For all n>k, P(n)is true.
" For all n, F(n)< 2" ¢ Ba:se ch(i?i:mds.

" F(n)is n™" Fibonacci number @ iduction hypothesis.

®=  P(m) holds for all m, k<m<n,

# Base Cases: @ Induction step.

" F0)=0<1,F1)=1<2 T oemne e deme HO
# Induction hypothesis:

= Assume F(m)<2™ for all m<n
# [nduction step.

= Assuming induction hypothesis derive Fn)<2".

" F(n)=HF(n- 1)+ Kn- 2). By induction hypothesis,
F(n-1) < 2™* and F(n-2) < 22
" S0 F(n) < 2mi+2m2 < 2%l = 2n
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Algorithm correctness

L
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>¢Precondition: something thataigorithm arraymax@. n)

Is true before a part of an Input array A of n integers
algorithm (e_g a |00p). A Output maximum element of
" CurrentMax contains A[OQ]. currentMax - A[0]
><Postcondition: something for 'iF/i[f]0>nCJ}rggtMaxthen
that is true after it finished currentMax « Ali]
running, return currentMax

" CurrentMax contains the
maximum element of A.

><Loop invariant: .

" CurrentMax is the maximum
of elements of A seen so far.
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Induction and correctness

N
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- : Input array A of n integer
Cur_rentMax cqntams A[O]. | Output maximum elenen
><Loop invariant:if true at step i, |ofA
still true after one more loop. currentMax « A[0]
= If currentMax contains the T i A > burr o thiax
maximum of the A[O..i], and the if then
is executed, currentMax will Al i il
contain the maximum of A[O..i+ 1]. return currentMax
>< Postcondition: follows from loop
Invariant.

" CurrentMax is the maximum
element of A.
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Induction and correctness

> Precondition: like base case.
= CurrentMax = A[O]. Algorithm arrayMax(A, n)
>Z|Loop invariant: if true at step i, still true th‘;tu?r{nagxf\mojr{,‘ é?etreng;:
after one more loop. of A
" Suppose CurrentMax Is the max of currentMax < A[0]
A[O0..i-1]. Two cases: fori <1ton —1do
= a) A[i]> CurrentMax. Then CurrentMax is ITAL] > currentMax
the max of A[0..i] since it is in the array | " L hortt iy
(A[i]) and it is the largest (>than Ali]
previous). return currentMax

= b) Afi] is not > than CurrentMax. Then
CurrentMax is the max of A[0..i] since it
was the max of A[0..i- 1] and AJi] is not
bigger.

# By induction, true for all iterations including
termination.
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Algorithm analysis

-®-Hf-an-algorithm is a sequence of (constantly
many) parts, its running time is the maximal

over running times of parts.

" Eg., if the algorithm sorts inputs in time O(n
log n) then looks at each one once in O(n),
total time is O(max(n log n, n)) = O(n log n).

><1If an algorithm has k nested loops, with n as
a bound, then the running time is nX.

" Hrst prefix average algorithm ran in time n=®.

><1f an algorithm makes n recursive calls each
time calling itself twice, it is exponential.
Calling itself once gives linear factor.

®" Hrst and second Fbonacci algorithms.
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