
Exam study sheet for CS2711

Here is the list of topics you need to know for the midterm. For each data structure listed below, make
sure you can do the following:

1. Give an example of this data structure (e.g., draw a binary search tree on 5 nodes).

2. Know the basic properties of data structures (e.g., that a heap has height log n) and be able to prove
them by induction.

3. Know which basic operations the data structure supports and be able to show them on an example
(e.g., insertion into an AVL tree).

4. Know what is the time complexity of its basic operations and how they compare between different
structures (e.g., searching in an AVL tree vs. searching in a linked list).

5. For each algorithm, make sure you know its time complexity, can write pseudocode for it and can
show its execution on an example.

For the analysis of algorithms (chapter 4), you need to know time complexity and induction, and be
able to solve problems similar to ones in labs and assignments.

List of topics

1. Basic data structures (chapters 3 and 6): Linked list, doubly linked list, array, extendable
array. Know why doubling the size is a better way to grow an array.

2. Stacks and queues (chapter 5): Know stack and queues data types (push/pop, enqueue/dequeue).
Be able to do parentheses/tag matching using stacks.

3. Trees (chapter 7): Know both general trees and binary trees. Terminology like root/parent/child,
height/depth/size,leaf/internal node, proper binary tree, complete tree. Traversals (preorder, inorder,
postorder). Evaluating arithmetic expressions using postorder traversal, drawing trees using inorder
traversal. Euler tour of a tree. Linked-list and array representations of trees.

Know the relationships among tree height, the number of nodes, number of edges, number of leaves,
etc.

4. Heaps (chapter 8): Know the definion of a heap and a priority queue, both bottom-up and top-
down heap construction. Using arrays to store heaps. Heapsort.

5. Hash tables (chapter 9): Know the definition of a hash table. Collision-handling schemes: chain-
ing, linear probing, quadratic probing, double hashing. Be able to give an example of a hash function
and a hash table, and state which properties a good hash function should have (output “looks ran-
dom”, not likely to get a collision). Hash codes as in the assignment 4.

6. Skip lists (chapter 9): Know the definition and performance of a skip list. Have an intuition why
skip list is efficient on average, why it has on average log n layers.

7. Search trees (chapter 10): Know the definitions and properties of a generic binary search tree, as
well as AVL tree, splay tree, (2,4) tree and red-black tree. Know the relationship between (2,4) trees
and red-black trees (but I will not ask much more about (2,4) and red-black trees, so concentrate on
AVL and splay trees). Be able to do AVL tree rotations (insert/delete) and the “splaying” operation.

1



Post-midterm topics

8. Sorting (chapter 11): For all sorting algorithm, know how they work (i.e., be able to show on a
given input how they work), and their running time (whether average or worst-case). Know when you
would use each of them (i.e., conditions when you would choose radix-sort, the fact that quicksort is
in-place, etc). Know the lower bound fo sorting! Know how to adapt quicksort to do selection.

9. Sets (chapter 11): We did not spend much time on sets, so just know that there is such a data struc-
ture which supports Union and Find operations, and that sets are used in Kruskal’s algorithm. Might
be good to remember that sets can be represented by some element (for understanding Kruskal’s).

10. Text processing (chapter 12): Know Boyer-Moore and Knuth-Morris-Pratt (as well as brute
force) algorithms. In particular, which precomputation do you do in them. Same for the suffix tries
(note that definition in the book and from the guest lecture are a bit different). Know the running
times. Huffman codes: know what they are, be able to read and write them.

11. Algorithm design (chapter 12): Greedy algorithms and dynamic programming were the main
design paradigms we looked at (we also talked about backtracking, but just as a case when dy-
namic programming does not work). Know what properties of a problem you need to apply these
paradigms (locally optimal choice is globally optimal for greedy, optimal subproblems property for
dynamic). Know examples of algorithms for both of them (Kruskal, Huffman, Dijkstra are greedy,
Floyd-Warshall, LCS are dynamic programming). Be able to design simple greedy/dynamic algo-
rithms.

12. Graphs (chapter 13): Adjacency list vs. adjacency matrix representation, directed graphs, weighted
graphs. Graph terminology (path, cycle, DAG, spanning tree...)

For all graph algorithms, know their name (e.g., Floyd-Warshall), the problem they solve (e.g., all-pair
shortest path), running time and restrictions (e.g., no negative-weight cycles).

• Graph traversals: Depth First Search (DFS) / Breadth First Search (BFS). Running time, which
problems they solve (e.g., BFS solves single-source shortest path on unweighted graphs, both
can detect cycles, etc). Be able to produce a BFS/DFS tree for a given (possibly directed) graph,
showing back/cross edges. Know topological sort and detecting strongly connected components.
Time O(n+m).

• Single-source shortest paths: BFS, Dijkstra’s algorthm, Bellmann-Ford (see slides for the latter).
Know that Dijkstra’s algorithm is greedy, requires positive weights on edges and uses a priority
queue as an auxulary data structure. Dijkstra: O((n+m) log n) or O(n2), Bellman-Ford O(nm).

• All-pairs shortest paths: definition of transitive closure, computing transitive closure using
matrix multiplication. Floyd-Warshall algorithm for all-pairs shortest paths O(n3).

• Minimum spanning trees: Kriskal’s algorithm and Prim-Jarnik’s algorithm. Both are greedy;
Kruskal’s uses sets, Prim-Jarnik’ uses a priority queue. Both run in O((m + n) log n).

2


