
Algorithmic approaches: scheduling case study1

A Greedy Algorithm for Scheduling Jobs with Deadlines and Profits

The setting is that we have n jobs, each of which takes unit time, and a processor on which
we would like to schedule them in as profitable a manner as possible. Each job has a profit
associated with it, as well as a deadline; if the job is not scheduled by the deadline, then
we don’t get the profit.2 Because each job takes the same amount of time, we will think
of a Schedule S as consisting of a sequence of job “slots” 1, 2, 3, . . . where S(t) is the job
scheduled in slot t.
(If one wishes, one can think of a job scheduled in slot t as beginning at time t − 1 and
ending at time t, but this is not really necessary.)

More formally, the input is a sequence (d1, g1), (d2, g2), · · · , (dn, gn) where gi is a nonnegative
real number representing the profit obtainable from job i, and di ∈ N is the deadline for
job i; it doesn’t hurt to assume that 1 ≤ di ≤ n. (The reason why we can assume that
every deadline is less than or equal to n is because even if some deadlines were bigger, every
feasible schedule could be “contracted” so that no job was placed in a slot bigger than n.)

Definition 1 A schedule S is an array: S(1), S(2), ..., S(n) where
S(t) ∈ {0, 1, 2, · · ·n} for each t ∈ {1, 2, · · · , n}.

The intuition is that S(t) is the job scheduled by S in slot t; if S(t) = 0, this means that no
job is scheduled in slot t.

Definition 2 S is feasible if
(a) If S(t) = i > 0, then t ≤ di. (Every scheduled job meets its deadline) (b) If t1 6= t2 and
S(t1) 6= 0, then S(t1) 6= S(t2). (Each job is scheduled at most once.)

We define the profit of a feasible schedule S by
P (S) = gS(1) + gS(2) + ... + gS(n), where g0 = 0 by definition.

Goal: Find a feasible schedule S whose profit P (S) is as large as possible; we call such a
schedule optimal.

We shall consider the following greedy algorithm. This algorithm begins by sorting the
jobs in order of decreasing (actually nonincreasing) profits. Then, starting with the empty
schedule, it considers the jobs one at a time; if a job can be (feasibly) added, then it is added
to the schedule in the latest possible (feasible) slot.

1Based, for the most parts, on University of Toronto CSC 364 notes, original lectures by Stephen Cook
2A simplified setting is one in which all jobs have the same profit and we are trying to maximize the

number of jobs in the schedule. In that case, our algorithm will consider jobs in order of increasing deadlines.

1



Greedy:
Sort the jobs so that: g1 ≥ g2 ≥ . . . ≥ gn

for t : 1..n
S(t)← 0 {Initialize array S(1), S(2), ..., S(n)}

end for
for i : 1..n

Schedule job i in the latest possible free slot meeting its deadline;
if there is no such slot, do not schedule i.

end for

Example. Input of Greedy:

Job i: 1 2 3 4 Comments
Deadline di: 3 2 3 1 (when job must finish by)
Profit gi: 9 7 7 2 (already sorted in order of profits)

Initialize S(t):
t 1 2 3 4

S(t) 0 0 0 0

Apply Greedy: Job 1 is the most profitable, and we consider it first. After 4 iterations:

t 1 2 3 4
S(t) 3 2 1 0

Job 3 is scheduled in slot 1 because its deadline t = 3, as well as slot t = 2, has already been
filled.

P (S) = g3 + g2 + g1 = 7 + 7 + 9 = 23.

Theorem 1 The schedule output by the greedy algorithm is optimal, that is, it is feasible
and the profit is as large as possible among all feasible solutions.

We will prove this using our standard method for proving correctness of greedy algorithms.
We say feasible schedule S ′ extends feasible schedule S iff for all t (1 ≤ t ≤ n),
if S(t) 6= 0 then S ′(t) = S(t).

Definition 3 A feasible schedule is promising after stage i if it can be extended to an optimal
feasible schedule by adding only jobs from {i + 1, · · · , n}.

2



Lemma 1 For 0 ≤ i ≤ n, let Si be the value of S after i stages of the greedy algorithm,
that is, after examining jobs 1, · · · , i. Then the following predicate P (i) holds for every i,
0 ≤ i ≤ n:

P (i) : Si is promising after stage i.

This Lemma implies that the result of Greedy is optimal. This is because P (n) tells us
that the result of Greedy can be extended to an optimal schedule using only jobs from ∅.
Therefore the result of Greedy must be an optimal schedule.

Proof of Lemma: To see that P (0) holds, consider any optimal schedule Sopt. Clearly Sopt

extends the empty schedule, using only jobs from {1, · · · , n}.

So let 0 ≤ i < n and assume P (i). We want to show P (i + 1). By assumption, Si can be
extended to some optimal schedule Sopt using only jobs from {i + 1, · · · , n}. Case 1: Job
i + 1 cannot be scheduled, so Si+1 = Si.
Since Sopt extends Si, we know that Sopt does not schedule job i + 1. So Sopt extends Si+1

using only jobs from {i + 2, · · · , n}.

Case 2: Job i + 1 is scheduled by the algorithm, say at time t0 (so Si+1(t0) = i + 1 and t0
is the latest free slot in Si that is ≤ di+1).

Subcase 2A: Job i + 1 occurs in Sopt at some time t1 (where t1 may or may not be equal
to t0).

Then t1 ≤ t0 (because Sopt extends Si and t0 is as large as possible) and Sopt(t1) = i + 1 =
Si+1(t0).

If t0 = t1 we are finished with this case, since then Sopt extends Si+1 using only jobs from
{i + 2, · · · , n}. Otherwise, we have t1 < t0. Say that Sopt(t0) = j 6= i + 1. Form S ′

opt

by interchanging the values in slots t1 and t0 in Sopt. Thus S ′
opt(t1) = Sopt(t0) = j and

S ′
opt(t0) = Sopt(t1) = i + 1. The new schedule S ′

opt is feasible (since if j 6= 0, we have moved
job j to an earlier slot), and S ′

opt extends Si+1 using only jobs from {i + 2, · · · , n}. We also
have P (Sopt) = P (S ′

opt), and therefore S ′
opt is also optimal.

Subcase 2B: Job i + 1 does not occur in Sopt.

Define a new schedule S ′
opt to be the same as Sopt except for time t0, where we define

S ′
opt(t0) = i + 1. Then S ′

opt is feasible and extends Si+1 using only jobs from {i + 2, · · · , n}.

To finish the proof for this case, we must show that S ′
opt is optimal. If Sopt(t0) = 0, then

we have P (S ′
opt) = P (Sopt) + gi+1 ≥ P (Sopt). Since Sopt is optimal, we must have P (S ′

opt) =
P (Sopt) and S ′

opt is optimal. So say that Sopt(t0) = j, j > 0, j 6= i + 1. Recall that Sopt

extends Si using only jobs from {i + 1, · · · , n}. So j > i + 1, so gj ≤ gi+1. We have
P (S ′

opt) = P (Sopt) + gi+1 − gj ≥ P (Sopt). As above, this implies tha t S ′
opt is optimal. �

3



We still have to discuss the running time of the algorithm. The initial sorting can be done in
time O(n log n), and the first loop takes time O(n). It is not hard to implement each body
of the second loop in time O(n), so the total loop takes time O(n2). So the total algorithm
runs in time O(n2). Using a more sophisticated data structure one can reduce this running
time to O(n log n), but in any case it is a polynomial-time algorithm.

Greedy Summary: In general, greedy algorithms are very fast. Unfortunately, for some
kinds of problems they only do not always yield an optimal solution (such as for Simple
Knapsack). However for other problems (such as the scheduling problem above, and finding
a minimum cost spanning tree) they always find an optimal solution. For these problems,
greedy algorithms are great.

Scheduling Jobs With Deadlines, Profits, and Durations

In the notes on Greedy Algorithms, we saw an efficient greedy algorithm for the problem of
scheduling unit-length jobs which have deadlines and profits. We will now consider a gen-
eralization of this problem, where instead of being unit-length, each job now has a duration
(or processing time).

More specifically, the input will consist of information about n jobs, where for job i we
have a nonnegative real valued profit gi ∈ R≥0, a deadline di ∈ N, and a duration ti ∈ N.
It is convenient to think of a schedule as being a sequence C = C(1), C(2), · · · , C(n); if
C(i) = −1, this means that job i is not scheduled, otherwise C(i) ∈ N is the time at which
job i is scheduled to begin.

We say that schedule C is feasible if the following two properties hold.

(a) Each job finishes by its deadline. That is, for every i, if C(i) ≥ 0, then C(i) + ti ≤ di.

(b) No two jobs overlap in the schedule. That is, If C(i) ≥ 0 and C(j) ≥ 0 and i 6= j, then
either C(i)+ ti ≤ C(j) or C(j)+ tj ≤ C(i). (Note that we permit one job to finish at exactly
the same time as another begins.)

We define the profit of a feasible schedule C by P (C) =
∑

C(i)≥0 gi.

We now define the problem of Job Scheduling with Deadlines, Profits and Durations:

Input A list of jobs (d1, t1, g1),..., (dn, tn, gn)

Output A feasible schedule C = C(1), ..., C(n) such that the profit P (C) is the maximum
possible among all feasible schedules.

Before beginning the main part of our dynamic programming algorithm, we will sort the
jobs according to deadline, so that d1 ≤ d2 ≤ · · · ≤ dn = d, where d is the largest deadline.
Looking ahead to how our dynamic programming algorithm will work, it turns out that it
is important that we prove the following lemma.

4



Lemma 2 Let C be a feasible schedule such that at least one job is scheduled; let i > 0
be the largest job number that is scheduled in C. Say that every job that is scheduled in C
finishes by time t. Then there is feasible schedule C ′ that schedules exactly the same jobs as
C, and such that C ′(i) = min{t, di} − ti, and such that all other jobs scheduled by C ′ end at
or before time min{t, di} − ti.

Proof: This proof uses the fact the the jobs are sorted according to deadline. The details
are left as an exercise.

We now perform the four steps of a dynamic programming algorithm.

Step 1: Describe an array of values we want to compute.
Define the array A(i, t) for 0 ≤ i ≤ n, 0 ≤ t ≤ d by

A(i, t) = max{P (C)|C is a feasible schedule in which only jobs from {1, · · · , i}
are scheduled, and all scheduled jobs finish by time t }.

Note that the value of the profit of the optimal schedule that we are ultimately interested
in, is exactly A(n, d).

Step 2: Give a recurrence.
This recurrence will allow us to compute the values of A one row at a time, where by the
ith row of A we mean A(i, 0), · · · , A(i, d).

• A(0, t) = 0 for all t, 0 ≤ t ≤ d.

• Let 1 ≤ i ≤ n, 0 ≤ t ≤ d. Define t′ = min{t, di} − ti. Clearly t′ is the latest possible
time that we can schedule job i, so that it ends both by its deadline and by time t.
Then we have:

If t′ < 0, then A(i, t) = A(i− 1, t).
If t′ ≥ 0, then A(i, t) = max{A(i− 1, t), gi + A(i− 1, t′)}.

We now must explain (or prove) why this recurrence is true. Clearly A(0, t) = 0.

To see why the second part of the recurrence is true, first consider the case where t′ < 0.
Then we cannot (feasibly) schedule job i so as to end by ti me t, so clearly A(i, t) = A(i−1, t).
Now assume that t′ ≥ 0. We have a choic e of whether or not to schedule job i. If we don’t
schedule job i, then the best profit we can get (from scheduling some jobs from {1, · · · i} so
that all end by time t) is A(i− 1, t). If we do schedule job i, then the previous lemma tells
us that we can assume job i is scheduled at time t′ and all the other scheduled jobs end by
time t′, and so the best profit we can get is gi + A(i− 1, t′).

5



Although the above argument is pretty convincing, sometimes we want to give a more rig-
orous proof of our recurrence, or at least the most difficult part of the recurrence.

THIS ARGUMENT CAN BE OMITTED ON THE FIRST READING.
Say that 1 ≤ i ≤ n, 0 ≤ t ≤ d, and t′ = min{t, di} − ti ≥ 0; we want to prove that
A(i, t) = max{A(i−1, t), gi +A(i−1, t′)}. To prove such an equality, it is usually convenient
to prove two inequalities:
A(i, t) ≥ max{A(i− 1, t), gi + A(i− 1, t′)} and
A(i, t) ≤ max{A(i− 1, t), gi + A(i− 1, t′)}.

• To prove A(i, t) ≥ max{A(i− 1, t), gi + A(i− 1, t′)}, we prove that both
A(i, t) ≥ A(i− 1, t) and A(i, t) ≥ gi + A(i− 1, t′) hold.

– To show that A(i, t) ≥ A(i−1, t), consider a feasible schedule C of profit A(i−1, t)
that schedules only jobs from {1, · · · , i−1} so that all jobs finish by time t. Clearly
C schedules only jobs from {1, · · · , i} so that all jobs finish by time t, so C’s profit
is less than or equal to the best such profit, so
A(i− 1, t) ≤ A(i, t).

– To show that A(i, t) ≥ gi + A(i − 1, t′), Consider a feasible schedule C of profit
A(i − 1, t′) that schedules only jobs from {1, · · · , i − 1} so that all jobs finish
by time t′. Let C ′ be the feasible schedule that extends C by scheduling job i
beginning at time t′. Then C ′ is a feasible schedule that schedules only jobs from
{1, · · · , i}, all ending by time t, and P (C ′) = gi +A(i− 1, t′). C ′ has a profit that
is less than or equal to the best such profit, so gi + A(i− 1, t) ≤ A(i, t).

• To prove that A(i, t) ≤ max{A(i− 1, t), gi + A(i− 1, t′)}, we prove that either
A(i, t) ≤ A(i − 1, t) or A(i, t) ≤ gi + A(i − 1, t′) holds. Let C be a feasible schedule
that only schedules jobs from {1, · · · , i} such that all jobs end by time t, and such that
P (C) = A(i, t). We consider two cases:

– Case 1: C does not schedule job i. Then C schedules only jobs from
{1, · · · , i− 1} so that all jobs finish by time t, so C’s profit is less than or equal
to the best such profit, so A(i, t) ≤ A(i− 1, t).

– Case 2: C schedules job i. Then by the previous lemma, there is a feasible
schedule C ′ such that C ′ schedules the same jobs as C, C ′ schedules job i beginning
at time t′, and C ′ schedules all its other jobs so that they end by time t′; we have
P (C ′) = P (C) = A(i, t). Let C ′′ be the feasible schedule that is the same as C ′,
except that C ′′ doesn’t schedule job i; so P (C ′′) = A(i, t) − gi. Since C ′′ is a
feasible schedule such that only jobs from {1, · · · i − 1} are scheduled and such
that all jobs end by time t′, its profit is less than or equal to the best such profit,
so A(i, t)− gi ≤ A(i− 1, t′), so A(i, t) ≤ gi + A(i− 1, t′).

6



Step 3: Give a high-level program.
We now give a high-level program that computes values into an array B, so that we will have
B[i, t] = A(i, t). (The reason we call our array B instead of A, is to make it convenient to
prove that the values computed into B actually are the values of the array A defined above.
This proof is usually a simple induction proof that uses the above recurrence, and so usually
this proof is omitted.)

for every t ∈ {0, · · · , d}
B[0, t]← 0

end for
for i : 1..n

for every t ∈ {0, · · · , d}
t′ ← min{t, di} − ti
if t′ < 0 then

B[i, t]← B[i− 1, t]
else

B[i, t]← max{B[i− 1, t], gi + B[i− 1, t′]}
end if

end for
end for

Step 4: Compute an optimal solution.
Let us assume we have correctly computed the values of the array A into the array B.
It is now convenient to define a “helping” procedure PrintOpt(i, t) that will call itself
recursively. Whenever we use a helping procedure, it is important that we specify the
appropriate precondition/postcondition for it. In this case, we have:
Precondition: i and t are integers, 0 ≤ i ≤ n and 0 ≤ t ≤ d.
Postcondition: A schedule is printed out that is an optimal way of scheduling only jobs from
{1, · · · , i} so that all jobs end by time t.

We can now print out an optimal schedule by calling
PrintOpt(n, d)
Note that we have written a recursive program since a simple iterative version would print
out the schedule in reverse order. It is easy to prove that PrintOpt(i, t) works, by induction
on i. The full program (assuming we have already computed the correct values into B) is as
follows:

procedure PrintOpt(i, t)
if i = 0 then return end if
if B[i, t] = B[i− 1, t] then

PrintOpt(i− 1, t)
else

7



t′ ← min{t, di} − ti
PrintOpt(i− 1, t′)
put “Schedule job”, i, “at time”, t′

end if
end PrintOpt

PrintOpt(n, d)

Analysis of the Running Time
The initial sorting can be done in time O(n log n). The program in Step 3 clearly takes time
O(nd). Therefore we can compute the entire array A in total time O(nd + n log n). When
d is large, this expression is dominated by the term nd. It would be nice if we could state
a running time of simply O(nd). Here is one way to do this. When d ≤ n, instead of using
an n log n sorting algorithm, we can so something faster by noting that we are sorting n
numbers from the range 0 to n; this can easily be done (using only O(n) extra storage) in
time O(n). Therefore, we can compute the entire array A within total time O(nd). Step 4
runs in time O(n). So our total time to compute an optimal schedule is in O(nd). Keep in
mind that we are assuming that each arithmetic operation can be done in constant time.

Should this be considered a polynomial-time algorithm? If we are guaranteed that on all
inputs d will be less than, say, n2, then the algorithm can be considered a polynomial-time
algorithm.

More generally, however, the best way to address this question is to view the input as a
sequence of bits rather than integers or real numbers. In this model, let us assume that all
numbers are integers represented in binary notation. So if the 3n integers are represented
with about k bits each, then the actual bit-size of the input is about nk bits. It is not hard
to see that each arithmetic operation can be done in time polynomial in the bit-size of the
input, but how many operations will the algorithm perform? Since d is a k bit number, d can
be as large as 2k. Since 2k is not polynomial in nk, the algorithm is not a polynomial-time
algorithm in this setting.

Now consider a slightly different setting. As before, the profits are expressed as binary
integers. The durations and deadlines, however, are expressed in unary notation. This
means that the integer m is expressed as a string of m ones. Hence, d is now less than the
bit-size of the input, and so the algorithm is polynomial-time in this setting.

Actually, in order to decide if this algorithm should be used in a specific application, all
you really have to know is that it performs about nd arithmetic operations. You can then
compare it with other algorithms you know. In this case, perhaps the only other algorithm
you know is the “brute force” algorithm that tries all possible subsets of the jobs, seeing
which ones can be (feasibly) scheduled. Using the previous lemma, we can test if a set of jobs
can be feasibly scheduled in time O(n), so the brute-force algorithm can be implemented to
run in time about n2n. Therefore, if d is much less than 2n then the dynamic programming

8



algorithm is better; if d is much bigger than 2n then the brute-force algorithm is better; if
d is comparable with 2n, then probably one has to do some program testing to see which
algorithm is better for a particular application.

The (General) Knapsack Problem

First, recall the Simple Knapsack Problem from the notes on Greedy algorithms. We are
given a sequence of nonnegative integer weights w1, · · · , wn and a nonnegative integer ca-
pacity C, and we wish to find a subset of the weights that adds up to as large a number as
possible without exceeding C. In effect, in the Simple Knapsack Problem we treat the weight
of each item as its profit. In the (general) Knapsack Problem, we have a separate (nonnega-
tive) profit for each job; we wish to find the most profitable knapsack possible among those
whose weight does not exceed C. More formally, we define the problem as follows.

Let w1, · · · , wn ∈ N be weights, let g1, · · · , gn ∈ R≥0 be profits, and let C ∈ N be a weight.
For each S ⊆ {1, · · · , n} let K(S) =

∑
i∈S wi and let P (S) =

∑
i∈S gi. (Note that K(∅) =

P (∅) = 0.) We call S ⊆ {1, · · · , n} feasible if K(S) ≤ C.
The goal is to find a feasible S so that P (S) is as large as possible.

We can view a Simple Knapsack Problem as a special case of a General Knapsack Problem,
where for every i, gi = wi.

Furthermore, we can view a General Knapsack Problem as a special case of a Scheduling
With Deadlines, Profits and Durations Problem, where all the deadlines are the same. To
see this, say that we are given a General Knapsack Problem with capacity C and with n
items, where the ith item has weight wi and profit gi. We then create a scheduling problem
with n jobs, where the ith job has duration wi, profit gi, and deadline C. A solution to
this scheduling problem yields a solution to the knapsack problem, and so we can solve
the General Knapsack Problem with a dynamic programming algorithm that runs in time
O(nC).

This is an example of a central concept in algorithms and complexity theory: a reduction
of one problem to the other. We have just shown that if we would have a fast algorithm
for the Scheduling with Deadlines, Profits and Durations, then we could solve the Knapsack
problem efficiently by “disguising” it as scheduling and running scheduling algorithm. It is
a big open question whether there exists such an efficient algorithm for scheduling, though:
although most people believe that such an algorithm does not exist, nobody has been able
to prove it (here, “efficient” means running in time “polynomial in the length of the input”).
This problem is called “P vs. NP” problem, and is stated, loosely, as follows: “is it true that
there are problems that have easily verifiable solutions, for which solutions cannot be found
more efficiently than doing a (form of) brute-force search?” Clay Mathematical Institute
lists this problem as one of the 7 main problems in mathematics for the new millenium, and
offers 1 million dollars for resolving it.

9



Scheduling and knapsack are both problems with “easily verifiable solutions” in a sense that
if somebody presents us a schedule or a content of a knapsack we can check easily if the
schedule contains conflicts / items fit in a knapsack; we can even check whether the profit is
greater than a certain given value. This is the property that the brute-force search algorithm,
as well as the backtracking algorithm that we will see in the next section, employ: note that
we do not say that it is easy to check that a certain solution is in fact the best one by only
looking at that solution! In complexity theory, the class of problems with easily verifiable
solutions is (modulo technical details3 ) called “NP”, and (a specially phrased version of)
the Scheduling problem is “NP-complete” meaning that any other problem in NP such as
Knapsack, can be “easily disguised” as a Scheduling problem.

1 Backtracking

If the largest deadline d has a value much larger than n (e.g., 2n or larger), then the dynamic
programming algorithm is not polynomial-time. Brute-force search (check all subsets of
jobs) takes time n2n. A version of the brute-force search that performs better in practice
is a backtracking algorithm: iteratively pick every job from 1 to n and recurse both for the
case when it can be scheduled and when it cannot. The advantage of this approach is that it
allows us to stop the moment we discovered a conflict in a subset of jobs, without considering
all extensions of that subset. The main part of the backtracking algorithm is its recursive
method.

RecBtSched(S, (di, ti, gi) . . . (dn, tn, gn))
S0 ← S; S1 ← S ∪ {i}
p0 ← RecBtSched(S0, (di+1, ti+1, gi+1) . . . (dn, tn, gn))
if (di, ti, gi) conflicts with S then

p1 ← −1
else p1 ← RecBtSched(S1, (di+1, ti+1, gi+1) . . . (dn, tn, gn))

end if
if p0 ≥ p1 then

S ← S0

return p0

else
S ← S1

return p1

end if

3The major technical detail here is that NP is a class of “decision” problems for which the algorithm
returns an answer “yes/no” as opposed to a value or a schedule: “is there a schedule with profit > B?” for
a B given as part of the input.

10



Here, we skipped the check that a set of jobs S can be scheduled feasibly: this can be done
in linear time (assuming jobs are sorted by the deadlines) using the lemma about scheduling
jobs at the latest possible moment.

Now, call RecBtSched() as follows:

Algorithm BacktrackSchedule((d1, t1, g1) . . . (dn, tn, gn))
S ← ∅
RecBtSched(S, (d1, t1, g1) . . . (dn, tn, gn))
return S

The idea of this algorithm is that it “backtracks” when it sees that a certain choice cannot
be made. Suppose, for example, that there are n jobs, and job 3 conflicts with job 1, but
none of the others conflict. The backtracking algorithm will first consider schedule with job
1 and without (both are possible), then on the next level of the recursion will try to add job
2 to the schedule (having 4 possibilities now). But on the level 3 of the recursion, it will rule
out schedules starting with {1, 2, 3} and {1, 3}, limiting the number of recursion calls to 6
rather than 8. Therefore, these (8− 6) ∗ 2n−1 possible sets which contain both 1 and 3 will
never be considered.

In the worst case, this algorithm has the same time complexity as brute-force search (think
of n jobs for which any n− 1 jobs form a schedule, but all n cannot, e.g., as in the knapsack
case). However it performs noticeably better in practice.

11


