









### COMP2000 Quiz Notes



**Computation and logic** 













### **Computation: Turing machine**

| Current state | Reads | Writes | Moves | New state   |
|---------------|-------|--------|-------|-------------|
| Start_state   | _     | Υ      | Right | Halt        |
| Start_state   | 0     | _      | Right | Start_state |
| Start_state   | 1     | _      | Right | Start_state |
| Start_state   | _     | Ν      | Right | Halt        |

- Turing machine:
  - Can compute anything we know to be computable by other means (Church-Turing thesis)
  - Has an infinite tape with a read/write head, which starts with an input written on it. Has finitely many states in its description.
  - Simple rules: in a state, read a symbol then change a state (maybe), overwrite the symbol with another one (maybe) and move Left or Right
  - Invented by Alan Turing to show that some problems are not computable.



### Computation: Game of Life

• Game of Life:



- As powerful as a Turing machine: a Turing machine can simulate it moves, and it can simulate a Turing machine (non-trivial!)
- Start with a board; some of the cells on the board are marked "live". Every cell has 8 neighbours (above, below, sides and diagonal).
- Rules:
  - If a live cell has fewer than 2, or more than 3 neighbours, it dies.
  - If a live cell has 2 or 3 neighbours, it stays alive.
  - If a dead cell has exactly 3 neighbours, it becomes live.
- Many patterns: static, oscillating, moving

# Logic: propositions



- *Propositions*: sentences that can be true or false
  - "It is Tuesday today" is true on a Tuesday and false on all other days.
  - "5 is a prime number" is true, "6 is prime" is false
  - Non-example: " x is a prime number". This is a predicate, it would become a proposition if x is set to a specific number. "Come here" is not a proposition either.
- Logic connectives: connect several propositions into a composite sentence that can be true or false, depending on the propositions. A sentence that is always true is called a *"tautology"*, always false *"contradiction"*.
- *Truth table*: a table listing all possible combinations of truth values of propositions, together with columns for composite statements. Can be used to find out when a composite statement is true and when it is false.
- Below is a truth table for the logic connectives we used:

| Α     | В     | not A | A and B | A or B | if A then B |
|-------|-------|-------|---------|--------|-------------|
| True  | True  | False | True    | True   | True        |
| True  | False | False | False   | True   | False       |
| False | True  | True  | False   | True   | True        |
| False | False | True  | False   | False  | True        |





## Logic: quantifiers



- A predicate is a "proposition with parameters", which becomes a proposition if the parameters are set to a specific value.
  - "x is a prime number". Prime(x)
  - "X loves Y"
- One can also make composite statements with predicates stating that for *every* or for *some* element of the kind the predicate is talking about something is true. The "every" (∀) and "some" or "exists", (∃) are called quantifiers, universal and existential.
  - Every man is mortal
  - There exists a number that is prime (some numbers are prime)
  - It is foggy every day in St. John's.
- Now, both propositional logic connectives and quantifiers can be combined to make composite statements of first-order logic.
  - Every man is an animal, and some animals have fur
  - Everybody loves somebody, and that somebody loves Elvis Presley.
    - $\forall X \exists Y (X loves Y) and (Y loves Elvis)$

## Modus ponens



- Modus ponens is a rule used in proofs in natural deduction. Here is the general form:
  - If A then B
  - A holds
  - Therefore, B holds



- With universal quantifier, becomes universal modus ponens; second line substitutes specific value.
  - All man are mortal
  - Socrates is a man
  - Therefore, Socrates is mortal.
- Modus ponens allows solving some logic problems and puzzles faster than truth tables. But nobody knows if it is always better (there is a million dollar prize for that).



Negations



- To disprove a universal ("every") statement, give a counterexample ("exists" statement).
  - It is foggy **every** day in St. John's
    - No, on Monday it was sunny.
  - So "**not** (every day is foggy)" is "exists a day that was **not** foggy".
  - But it's definitely does not mean that every day is not foggy
  - "not (exists a day that is foggy)" is "every day is not foggy".
- Similarly, negating an existential get universal of the "not"s:
  - There exists a natural number less than 1
    - No, every natural number is not less than 1.
- For logic connectives, notice that "if.. Then" is similar to "every", and "and" is similar to "exists":
  - If Socrates is a man, then Socrates is mortal
    - No, Socrates is a man, and he is immortal
  - Number 0.5 is a natural number and it is less than than 1
    - No, either 0.5 is **not** a natural number, **or** it is **not** less than 1.
  - Either today is Tuesday or today is Thursday
    - No, today is **not** Tuesday **and** today is **not** Thursday.

#### For the quiz:

- Be able to say what a transition of a Turing machine such as "in state A on reading 0 go to state B, write 1 and move right" does to the tape content.
- Be able to do a few generations of a game of life starting with a given pattern.
- There will be a few yes/no questions (e.g., is it true that everything we know to be computable is computable by a Turing machine?)

### For the quiz

- Practice solving knight and knave puzzles and (simple) treasure hunts. Use truth tables and modus ponens, where appropriate.
- Make sure that you can recognize those fallacies we played with (which card to turn over? If I like blue triangle, what about yellow circle? Is Susan more likely to be a banker or a banker-activist?)
- Practice translating between logic and English, and identifying propositions and quantifiers in English sentences.
- Practice doing negations. See some new slides in Lecture 3, and last lecture.
- Email me if you have any questions! I will be around on Wednesday afternoon, if you'd like to stop by.