
Logic: puzzles, truth and human fallacies

COMP2000

Lecture 3

B J25



Do we think logically?

• You see the following cards. Each has a letter on 
one side and a number on the other. 

• Which cards do you need to turn to check that if a 
card has a J on it then it has a 5 on the other side? 
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Another puzzle

• You are one of the organizers at a mixer; many  
people are drinking, some are not. 

• You need to make sure that nobody underage is 
drinking: that is,  if somebody is drinking, then 
they are over 19 years old. 

• Which category of people will you need to check? 



“if ... then” in logic 
• Both puzzles have the same structure: 

“if A then B”    

• What circumstances make this true? 

– A is true and B is true

– A is true and B is false

– A is false and B is true

– A is false and B is false
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A → B

• We make logical conclusions all the time
• But do we always make them “logically”? 
• Sometimes people  think that “if ... then” goes 

both ways... 
– If you live in NL, you must pay HST. John lives in 

BC. Does he pay HST? 
– If today it Tuesday, then there is a COMP2000 

lecture. Today is Thursday. Is there a lecture?



Natural vs. Logic language
• Natural languages are ambiguous.  
• For example, the word “any” can have different 

meanings depending on the context:

• Any = some
– She will be happy if she can solve any question. 
– She will be happy if she can solve every question. 

• Any = all 
– Any student knows this. 
– Every student knows this. 



Language of logic
Pronunciation Notation Meaning

A  and B A  /\ B True if both A and B are true

A or B A  \/ B True if either A or B are true (or both)

If A then B A  -> B True whenever if A is true, then B is also true

Not A ~A Opposite of A is true, so true if A is false  

• Let A be “It is sunny” and B be “it is cold”
 A /\ B:  It is sunny and cold
 A \/ B:  It is either sunny or cold
 A -> B:  If it is sunny, then it is cold
 ~A:        It is not sunny 



Language of logic

• Let 
• A be “It is sunny”,  
• B be “it is cold”, 
• C  be “It’s snowing”

• Let’s make some sentences out of A, B, C

• Now we can combine
these operations
to make longer formulas in the language of logic

Pronunciation Notation True when

A  and B A  /\ B Both A and B must be true

A or B A  \/ B Either A or B must be true (or both)

If A then B A  -> B if A is true, then B is also true

Not A ~A Opposite of A is true



Language of logic

 What are the translations of: 
 B /\ C -> ~A
 If it is cold and snowing, then it is not sunny

 B -> (C \/ A) 
 If it is cold, then it is either snowing or sunny

 ~A /\ A -> C
 If it is sunny and not sunny, then it is snowing. 

• Let 
• A be “It is sunny”,
• B be “it is cold”, 
• C  be “It’s snowing”

Pronunciation Notation True when

A  and B A  /\ B Both A and B must be true

A or B A  \/ B Either A or B must be true (or both)

If A then B A  -> B if A is true, then B is also true

Not A ~A Opposite of A is true

THENANDIF ( ) NOT

THEN ORIF ( )

THENANDIF ( )NOT



The truth

• We talk about a sentence being true or false 
when the values of the variables are known.

• If we didn’t know whether it is sunny, we 
would not know whether A /\ B -> C is true or 
false. 

• If a sentence is true for every possible 
combinations of variable truth assignments, 
we call it a “tautology” 



“if ... then” in logic 
• Both puzzles have the same structure: 

“if A then B”    

• What circumstances make this true? 

– A is true and B is true

– A is true and B is false

– A is false and B is true

– A is false and B is false
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Truth tables
A B not A A and B A or B if A then B

True True False True True True

True False False False True False

False True True False True True

False False True False False True

A B

True True

True False

False True

False False

• Let 
• A be “It is sunny”
• B be “it is cold”

• It is sunny and cold. 
• It is sunny and not cold
• It is not sunny and cold
• It is neither sunny nor cold



Truth tables
A B not A A and 

B
A or B if A then 

B

True True False True True True

True False False False True False

False True True False True True

False False True False False True

A B (Not A) or B

True True True

True False False

False True True

False False True

• Let 
• A be “It is sunny”
• B be “it is cold”

• It is sunny and cold. 
• It is sunny and not cold
• It is not sunny and cold
• It is neither sunny nor cold

• Now, ~ A \/ B  is:



Or: the law of excluded middle 
• In classical logic, the law of excluded middle say that 

either a statement or its opposite must be true. 
• But here by the opposite we really mean a  negation

 A: It is sunny.  
 ~A: It is not sunny   

 A: Today is Tuesday. 
 ~A: Today is not Tuesday 

 A:  John votes for NDP. 
 ~A:  John does not vote for NDP 

 A:  You are with us
 ~A:  You are not with us. 



Negating composite statements

• What is the negation (opposite) of a longer logic 
statement? Take a truth table column and flip all 
the values. 
– The negation of  “A and B”,  not(A and B), is true 

whenever either A or B is false (check the truth table.   
That is not(A and B) is the same as (not A or not B).  

– The negation of “A or B” is true whenever both A and B 
are false: not(A or B) is the same as (not A and not B). 

– Since “if A then B” is the same as “not A or B”, its 
negation is “A and not B”.   Remember that “if A then B” 
is only false when A is true, and B is false; check that “A 
and not B” is true in exactly the same scenario.



NOT’ing longer sentences
• For a longer combination, start with the connective 

applied last when computing a truth table:  
• “not (if (A or not B) then (A and C))” becomes  
• (A or not B) and not(A and C)  by negating “if... Then..”
• (A or not B) and (not A or not C)  by negating the last “and”

– Let A be “it’s sunny” and B “it’s cold”.  
• “It’s sunny and cold today”!  -- No, it’s not!  
• That could mean

– No, it’s not sunny. 
– No, it’s not cold.
– No, it’s neither sunny nor cold. 

• In all of these scenarios, “It’s either not sunny or not cold” is true. 



More on “not if.. then”

• Remember that for “if A then B” there is only one 
scenario when it is false: it is when A is true, and B is 
false. 

• Let A be “it’s raining” and B “it is cloudy”. Then “if A 
then B” means if it is raining it must be cloudy. 

• “not (if A then B)” means “it’s not true that when it 
is raining it must be cloudy”. Or,  equivalently,  “it’s 
raining, and it is not cloudy” (there is probably a 
rainbow then, too) .

• “not (if A then B) is definitely not a negation of  “if B 
then A”!   

->



Or: elusive, not exclusive. 
• I like one of the shapes.

• I like one of the colours.

• I like a figure if it has either my favourite shape or my 
favourite colour.   

• I like the blue triangle. What can you say about the rest?  



Proof vs. disproof
• To prove that something is (always) true:

– Make sure it holds in every case.
• I have classes on every day that starts with T.  I have classes on 

Tuesday and Thursday (and Friday, but that’s irrelevant). 

– Or assume it does not hold, and then get something 
strange as a consequence

• Suppose there are finitely many prime numbers. What divides the 
number that’s a product of all primes +1? 

• To disprove that something is always true: 
– Give just one example where it breaks down. 

• I have classes every day! – No, you don’t have classes on Saturday!
• All  girls hate math! – No, I love math and I am a girl :) 
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Knights and knaves

• On a mystical island, there are two kinds of 
people: knights and knaves. 

• Knights always say the truth.  

• Knaves always lie.



Knights and knaves

• Puzzle 1:  You meet two people on the 
island, Arnold and Bob. Arnold says “at 
least one of us is a knave”.  Is Arnold a 
knight or a knave? What about Bob? 

• On a mystical island, there are two kinds of 
people: knights and knaves.  Knights always tell 
the truth.  Knaves always lie.



Knights and knaves

• Puzzle 2:  You meet two people on the island, 
Arnold and Bob. Arnold says “Either I am NOT 
a knight, or Bob is a knave”  Is Arnold a knight 
or a knave? What about Bob? 

• On a mystical island, there are two kinds of 
people: knights and knaves.  Knights always tell 
the truth.  Knaves always lie.



Knights and knaves

• Puzzle 3:  You see  three islanders talking to 
each other,  Arnold, Bob and Charlie. You ask 
Arnold “Are you a knight?”, but can’t hear 
what he answered.  Bob pitches in: “Arnold 
said that he is a knave!” and Charlie interjects 
“Don’t believe Bob, he’s lying”.  Out of Bob and 
Charlie, who is a knight a who is a knave? 

• On a mystical island, there are two kinds of 
people: knights and knaves.  Knights always tell 
the truth.  Knaves always lie.



Twins puzzle

• There are two identical twin brothers, Dave 
and Jim. 

• One of them always lies; another always tells 
the truth (like knights and knaves). 

• Suppose you see one of them and you want to 
find out his name. 

• How can you learn if you met Dave or Jim by 
asking just one short yes-no question? You 
don’t know which one of them is the liar. 
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