COMP2000
Logic and Computation
Lecture 2
Life vs. machine
Administrative stuff

- Lab is February 15th (next Wednesday).

- Readings so far:
 - Chapter 1: Information
 - Chapter 2: Computation
 - Chapter 10: Cellular automata
Models of computation

• In this lecture, we will talk about two (surprisingly, equivalent) models of computation
 – Our modern-day computers are based on this model
• The first one is the Turing machine
 – Our modern-day computers are based on this model
• The second is the Game of Life
 – Looks nothing like a computer, and yet has the same power.
Turing machine

• A Turing machine has an (unlimited) memory, visualized as a tape
• Or a stack of paper
• And takes very simple instructions:
 – Read a symbol
 – Write a symbol
 – Move one step left or right on the tape
 – Change internal state.
Executing instructions

- Drive straight until you see the Basilica
 Internal state: looking for Basilica
 Go straight. Check for Basilica. Repeat.

- Then turn right, and drive till the next light.
 Turn right.
 Change state to “Look for traffic light”
 Go straight. Check for traffic light. Repeat.

- Then turn right, and enter Tim Hortons parking lot.
 Change state to “Look for Tim Hortons”
 When see Tim Hortons, turn right into the parking lot
Church-Turing thesis

• Everything we can call “computable” in any sense of this word is computable by a Turing machine.
Church-Turing thesis

Everything we can call “computable” in any sense of this word is computable by a Turing machine.
Turing machine

• A Turing machine computation starts with the tape blank except for the input
• It starts in the special start state looking at the start of the input
• Then keeps reading, writing and changing states according to the rules
• It may never stop
• If it stop, what is written on the tape is its output.
Turing machine example

• Check if the tape is empty:
 – At the start, read the first symbol
 – If it is blank, say “yes”
 – Otherwise, say “no”

• Instructions:

<table>
<thead>
<tr>
<th>Current state</th>
<th>Reads</th>
<th>Writes</th>
<th>Moves</th>
<th>New state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start_state</td>
<td>_</td>
<td>Y</td>
<td>Right</td>
<td>Halt</td>
</tr>
<tr>
<td>Start_state</td>
<td>0</td>
<td>N</td>
<td>Right</td>
<td>Halt</td>
</tr>
<tr>
<td>Start_state</td>
<td>1</td>
<td>N</td>
<td>Right</td>
<td>Halt</td>
</tr>
</tbody>
</table>
Turing machine example

• “Check if the tape is empty” instructions:

<table>
<thead>
<tr>
<th>Current state</th>
<th>Reads</th>
<th>Writes</th>
<th>Moves</th>
<th>New state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start_state</td>
<td>_</td>
<td>Y</td>
<td>Right</td>
<td>Halt</td>
</tr>
<tr>
<td>Start_state</td>
<td>0</td>
<td>N</td>
<td>Right</td>
<td>Halt</td>
</tr>
<tr>
<td>Start_state</td>
<td>1</td>
<td>N</td>
<td>Right</td>
<td>Halt</td>
</tr>
</tbody>
</table>

• Simulator program:

```plaintext
0        *    *    *    *    start_state ; rename start state

start_state _    Y    r    halt     ; if empty, write Y and stop
start_state 0    N    r    halt    ; if tape has 0, write N and stop
start_state 1    N    r    halt    ; if tape has 1, write N and stop
```
Turing machine example

• Check if the tape contains a 1:
 – At the start, read the first symbol
 – If it is 1, say “yes”
 – Otherwise, move right and repeat (keep looking)
 – Seeing a blank, say “no”

• Instructions:

<table>
<thead>
<tr>
<th>Current state</th>
<th>Reads</th>
<th>Writes</th>
<th>Moves</th>
<th>New state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start_state</td>
<td>_</td>
<td>N</td>
<td>Right</td>
<td>Halt</td>
</tr>
<tr>
<td>Start_state</td>
<td>0</td>
<td>0</td>
<td>Right</td>
<td>Start_state</td>
</tr>
<tr>
<td>Start_state</td>
<td>1</td>
<td>Y</td>
<td>Right</td>
<td>Halt</td>
</tr>
</tbody>
</table>
Turing machine example

• “Check if the tape contains a 1” instructions:

<table>
<thead>
<tr>
<th>Current state</th>
<th>Reads</th>
<th>Writes</th>
<th>Moves</th>
<th>New state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start_state</td>
<td>_</td>
<td>N</td>
<td>Right</td>
<td>Halt</td>
</tr>
<tr>
<td>Start_state</td>
<td>0</td>
<td>0</td>
<td>Right</td>
<td>Start_state</td>
</tr>
<tr>
<td>Start_state</td>
<td>1</td>
<td>Y</td>
<td>Right</td>
<td>Halt</td>
</tr>
</tbody>
</table>

• Simulator program:

```
0                    *    *    *    start_state ; rename start state
start_state _    N    r    halt                ; if reached blank, write N and stop
start_state 0    0    r    start_state ; if still on input and no 1, repeat
start_state 1    Y    r    halt                 ; if seeing a 1, write Y and stop
```
Turing machine example

• Check if the tape is empty:
 – At the start, read the first symbol
 – If it is blank, say “yes”
 – Otherwise, erase the tape and say “no”

• Instructions:

<table>
<thead>
<tr>
<th>Current state</th>
<th>Reads</th>
<th>Writes</th>
<th>Moves</th>
<th>New state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start_state</td>
<td>_</td>
<td>Y</td>
<td>Right</td>
<td>Halt</td>
</tr>
<tr>
<td>Start_state</td>
<td>0</td>
<td>_</td>
<td>Right</td>
<td>no_state</td>
</tr>
<tr>
<td>Start_state</td>
<td>1</td>
<td>_</td>
<td>Right</td>
<td>no_state</td>
</tr>
<tr>
<td>no_state</td>
<td>_</td>
<td>N</td>
<td>Right</td>
<td>Halt</td>
</tr>
<tr>
<td>no_state</td>
<td>0</td>
<td>_</td>
<td>Right</td>
<td>no_state</td>
</tr>
<tr>
<td>no_state</td>
<td>1</td>
<td>_</td>
<td>Right</td>
<td>no_state</td>
</tr>
</tbody>
</table>
Check if the tape is empty

<table>
<thead>
<tr>
<th>Current state</th>
<th>Reads</th>
<th>Writes</th>
<th>Moves</th>
<th>New state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start_state</td>
<td>_</td>
<td>Y</td>
<td>Right</td>
<td>Halt</td>
</tr>
<tr>
<td>Start_state</td>
<td>0</td>
<td>_</td>
<td>Right</td>
<td>no_state</td>
</tr>
<tr>
<td>Start_state</td>
<td>1</td>
<td>_</td>
<td>Right</td>
<td>no_state</td>
</tr>
<tr>
<td>no_state</td>
<td>_</td>
<td>N</td>
<td>Right</td>
<td>Halt</td>
</tr>
<tr>
<td>no_state</td>
<td>0</td>
<td>_</td>
<td>Right</td>
<td>no_state</td>
</tr>
<tr>
<td>no_state</td>
<td>1</td>
<td>_</td>
<td>Right</td>
<td>no_state</td>
</tr>
</tbody>
</table>

• Simulator program:

```
0                    *    *    *    start_state ; rename start state

start_state _ Y r halt ; if empty, write Y and stop
start_state 0 _ r no_state ; if tape has 0 or 1, start erasing
start_state 1 _ r no_state ; while erasing, remember “no”

no_state _ N r halt ; tape is empty, write N and stop
no_state 0 _ r no_state ; keep erasing remembering “no”
no_state 1 _ r no_state ; keep erasing remembering “no”
```
Turing machine

- Can do arithmetic (in binary)
 - see example of add 1
- Can do logic
 - Topic of the next class
- Can simulate any model of computation so far
 - Church-Turing thesis.
- Can have self-replicating programs
- Cannot solve some problems
 - “Am I lying”? “Is this true?”
 - “Will this computation ever stop?”

Does it mean nobody can solve them?
Conway’s game of life

- Rules of the Game of Life:
- Start with a board with a square grid
- Mark some grid cells as “live”
- At every step of the game:
 - Every live cell with less than 2 neighbours dies
 - Every live cell with more than 3 neighbours dies
 - A cell with exactly 3 neighbours becomes alive (is “born”).
Conway’s game of life: what can it do?

- Converge to a still pattern
- Oscillate
- Create a moving pattern
- Simulate a Turing machine

Rules of the Game of Life:
- At every step of the game:
 - Every live cell with less than 2 neighbours dies
 - Every live cell with more than 3 neighbours dies
 - A cell with exactly 3 neighbours becomes alive (is “born”).
Conway’s game of life: what can it do?

• At every step of the game:
 – Every live cell with less than 2 neighbours dies
 – Every live cell with more than 3 neighbours dies
 – A cell with exactly 3 neighbours becomes alive (is “born”).
Conway’s game of life: what does it mean to compute?

- Start with a few cells lit up
- See if cells somewhere else light up
- Make it so they only light up if some condition holds
- Just like a Turing machine writing “Y” on the tape if some condition holds about its input

Rules of the Game of Life:
At every step of the game:
- Every live cell with less than 2 neighbours dies
- Every live cell with more than 3 neighbours dies
- A cell with exactly 3 neighbours becomes alive (is “born”).
Simulators

• Turing machine
 – Use this as the first line to give name to the start state
 0 * * * start_state

 – [Image]

http://morphett.info/turing/turing.html

• Game of Life:
 – [Link]

– (with colours)

– [Link]

http://www.foundalis.com/mat/life/features.htm

– LogiCell
[Link]