

COMP 1002

Intro to Logic for Computer Scientists

Lecture 9

Meow-stery

- One evening there was a cat fight in a family consisting of a mother cat, a father cat, and their son and daughter kittens.
- One of these four cats attacked and bit another!
- One of the cats watched the fight.
- The other one hissed at the fighters.
- These are the things we know for sure:

- www.clipartof.com · 50182
- 1. The watcher and the hisser were not of the same sex.
- 2. The oldest cat and the watcher were not of the same sex.
- 3. The youngest cat and the victim were not of the same sex.
- 4. The hissing cat was older than the victim.
- 5. The father was the oldest of the four.
- 6. The attacker was not the youngest of the four.
- Which nasty cat was the attacker?

- What is the relation between propositional logic we studied and logic circuits?
 - View a formula as computing a function (called a Boolean function),
 - inputs are values of variables,
 - output is either *true (1)* or *false (0)*.
 - For example, Majority(x, y, z) = true when at least two out of x, y, z are true, and false otherwise.
 - Such a function is fully described by a truth table of its formula (or its circuit: circuits have truth tables too).

Boolean functions and circuits

- What is the relation between propositional logic and logic circuits?
 - So both formulas and circuits "compute" Boolean functions – that is, truth tables.
 - In a circuit, can "reuse" a piece in several places, so a circuit can be smaller than a formula.
 - Still, most circuits are big!
 - -Majority(x, y, z) is $(x \land y) \lor (x \land z) \lor (y \land z)$

DNF formulas

• We talked about CNF formulas (Product of Sums), which are of the form AND of ORs of possibly negated variables (literals).

- For example, $(x \lor \neg y) \land (\neg x \lor \neg z \lor w) \land (x)$

 A negation of a CNF is an OR of ANDs of literals. It is called a DNF (disjunctive normal form), or Sum of Products.

- For example, $(\neg x \land y) \lor (x \land z \land \neg w) \lor (\neg x)$

Formulas for Boolean functions

- Suppose there is a Boolean function f such that f(1,0,0) = 1.
 - First, interpret 1 as True and 0 as False.
 - Say, A = True, B = False, C=False,
 - Then the formula F_f encoding function f above should be true on A=True, B=False, C=False.
 - We can now write a formula which is true only on this assignment:
 - $A \land \neg B \land \neg C$

Canonical DNF

- Now, to write a formula encoding the whole Boolean function f, write a formula encoding every assignment that makes f output 1.
 - Say f(1,0,0) = 1, f(1,0,1) = 1, and for any other input f(x, y, z) = 0
 - Then the corresponding assignments are $A \land \neg B \land \neg C$ and $A \land \neg B \land C$
- And finally take an OR of these formulas.
 - So the resulting formula would say "Either the formula is true because we are in the first scenario where f outputs 1, or the second, etc..."
 - $(A \land \neg B \land \neg C) \lor (A \land \neg B \land C)$
- This formula is called the **canonical DNF** of f
 - Every Boolean function f has a canonical DNF.

Canonical CNF

- Every truth table (Boolean function) can be also be written as a CNF:
 - Take every falsifying assignment (f(x, y, z) = 0)
 - Say, A = False, B = True, C=False.
 - Write it as a formula which is true only on this assignment:
 - $\neg A \land B \land \neg C$
 - To say that this assignment does not happen, write its negation:
 - $\neg(\neg A \land B \land \neg C) \equiv (A \lor \neg B \lor C)$
 - Take an AND of these for all falsifying assignments
 - It is equivalent to the original formula.
 - And it is a CNF! Called the **canonical CNF** of this formula.

 CNFs only have ¬,V,Λ, yet any formula can be converted into a CNF

- Any truth table can be coded as a CNF

- Call a set of connectives which can be used to express any formula a complete set of connectives.
 - In fact, \neg ,V is already complete. So is \neg ,A.
 - By DeMorgan, $(A \lor B) \equiv \neg(\neg A \land \neg B)$ No need for \lor !
 - But Λ ,V is not: cannot do \neg with just Λ ,V.
 - Because when both inputs have the same value, both Λ,V leave them unchanged.

- How many connectives is enough?
 - Just one: NAND (NotAND), also called the Sheffer stroke, written as |

$$\neg \neg A \equiv A \mid A$$

$$-A \lor B \equiv \neg(\neg A \land \neg B)$$
$$\equiv (\neg A \mid \neg B)$$
$$\equiv ((A \mid A) \mid (B \mid B))$$

Α	В	A B
True	True	False
True	False	True
False	True	True
False	False	True

– In practice, most often stick to Λ, V, \neg

Puzzle 9

 Susan is 28 years old, single, outspoken, and very bright. She majored in philosophy. As a student she was deeply concerned with issues of discrimination and social justice and also participated in anti-nuke demonstrations.

Please rank the following possibilities by how likely they are. List them from least likely to most likely. Susan is:

- 1. a kindergarden teacher
- 2. works in a bookstore and takes yoga classes
- 3. an active feminist
- 4. a psychiatric social worker
- 5. a member of an outdoors club
- 6. a bank teller
- 7. an insurance salesperson
- 8. a bank teller and an active feminist

