

COMP 1002

Intro to Logic for Computer Scientists

Lecture 8

Admin stuff

- Labs start next Monday/Wednesday

 Lab 1 posted
- Assignment 1 posted. Due Jan 24
 - We switched to 6 assignments at 5% each
 - Please type up your assignments!
- Midterm: Feb 28th
 - 3 assignments handed in and marked by the drop date, but not the midterm.

Puzzle 8

- Suppose that nobody in our class carries more than 10 pens.
- There are 108 students in our class.
- Prove that there are at least 2 students in our class who carry the same number of pens.

– In fact, there are at least 10 who do.

Pigeonhole Principle

- Suppose that nobody in our class carries more than 10 pens.
- There are 108 students in our class.
- Prove that there are at least 2 students in our class who carry the same number of pens.
 - In fact, there are at least 10 who do.
- The Pigeonhole Principle:
 - If there are n pigeons
 - And n-1 pigeonholes
 - Then if every pigeon is in a pigeonhole
 - At least two pigeons sit in the same hole

Pigeonhole Principle

- Suppose that nobody in our class carries more than 10 pens. There are 108 students in our class. Prove that there are at least 2 students in our class who carry the same number of pens.
 - In fact, there are at least 10 who do.
- The Pigeonhole Principle:
 - If there are n pigeons and n-1 pigeonholes
 - Then if every pigeon is in a pigeonhole
 - At least two pigeons sit in the same hole
- Applying to our problem:
 - n-1 = 11 possible numbers of pens (from 0 to 10)
 - Even with n=12 people, there would be 2 who have the same number.
 - If there were less than 10, say 9 for each scenario, total would be 101.
 - Note that it does not tell us which number or who these people are!

Pigeonhole Principle

- Prove that at least two people in our class of 108 will get the same mark in the class (0 to 100)
- The Pigeonhole Principle:
 - If there are more pigeons than holes
 - Eg n pigeons and at most n-1 holes
 - Then if every pigeon is in a pigeonhole
 - At least two pigeons sit in the same hole
- Applying to our problem:
 - There are n=108 people in our class.
 - There are 101 < n-1=107 possible marks.
 - By the Pigeonhole Principle, at least two people get the same mark

Automated provers

 How to make an automated prover which checks whether a formula is a tautology?

- And so can check if an argument is valid, etc.

- Truth tables:
 - easy to program, but proofs are huge.
- Natural deduction:
 - proofs might be smaller than a truth table
 - Are they always? Good question...
 - even if there is a small proof, how can we find one quickly?
 - Nobody knows...

Resolution proofs

- Middle ground: use the **resolution rule**:
 - Basis for many practical provers (SAT solvers).
 - Used in verification, scheduling, etc...
 - $\begin{array}{cccc} C \lor x & y \lor \neg z \lor w & y \lor w \lor \neg z \\ D \lor \neg x & u \lor \neg w & \neg z \lor \neg w \end{array}$

 $\therefore C \lor D \qquad \therefore y \lor \neg z \lor u \qquad \therefore y \lor \neg z$

• Ignore order in an OR and remove duplicates.

Resolution proofs

- Rather than proving that F is a tautology, prove that $\neg F \equiv FALSE$. That is, a proof of F is a **refutation** of $\neg F$
 - To check that an argument is valid, refute AND of premises AND NOT conclusion.
- Last step of the resolution refutation of $\neg F$:
 - from x and $\neg x$ derive FALSE, for some variable x.
 - If you cannot derive anything new, then the formula is satisfiable.

 $(y \lor \neg z) \land (\neg y) \land (y \lor z)$ $(\neg z)$

FALSE

Decision trees

- Resolution rule:
 - from clauses ($C \lor x$) and ($D \lor \neg x$)
 - Where C and D are ORs of possibly negated variables.
 - derive clause $(C \lor D)$
 - Show that all clauses cannot be satisfied at the same time.
- An "upside-down" view: decision tree.
 - For every assignment, some clause is false.

 $(\neg y) \quad (y \lor \neg z) \quad (\neg y) \qquad (y \lor z)$

$$(y \lor \neg z) \land (\neg y) \land (y \lor z)$$
$$(\neg z) \qquad (z)$$

FALSE

CNF (Product of Sums)

- Resolution works best when the formula is of the special form: it is an AND of ORs of (possibly negated) variables (called literals).
- This form is called a **Conjunctive Normal Form**, or **CNF**.
 - Also known as Product of Sums
 - $-(y \lor \neg z) \land (\neg y) \land (y \lor z) \text{ is a CNF}$
 - $-(x \lor \neg y \lor z)$ is a CNF. So is $(x \land \neg y \land z)$.
 - $-(x \lor \neg y \land z)$ is not a CNF
- An AND of CNF formulas is a CNF formula.
 - So if all premises are CNF and the negation of the conclusion is a CNF, then AND of premises AND NOT conclusion is a CNF.

CNF

- To convert a formula into a CNF.
 - Open up the implications to get ORs.
 - Get rid of double negations.
 - Convert $F \lor (G \land H)$ to $(F \lor G) \land (F \lor H)$.

• Example:
$$A \rightarrow B \wedge C$$

 $\equiv \neg A \lor B \land C$
 $\equiv (\neg A \lor B) \land (\neg A \lor C)$

 In general, CNF can become quite big, especially when have ↔. There are tricks to avoid that...

Natural deduction

- A: this house is next to a lake.
- B: the treasure is in the kitchen
- C: The tree in front is elm
- D: the treasure is under the flagpole.
- E: The tree in the back is oak
- F: The treasure is in the garage
- If house is next to the lake then the treasure is not in the kitchen
- The house is next to the lake
- Therefore, the treasure is not in the kitchen.

- 1. If A then not B
- 2. If C then B
- 3. A
- 4. C or D
- 5. If E then F
- 6. Not B
- 7. Not C
- 8. D

Treasure hunt

- 1. If this house is next to a lake, then a treasure is not in the kitchen
- 2. If the tree in the font yard is an elm, then the treasure is in the kitchen.
- 3. This house is next to a lake
- 4. The tree in the front yard is an elm, or the treasure is buried under the flagpole
- 5. If the tree in the back yard is an oak, then the treasure is in the garage.

1.	$A \rightarrow \neg B$	1.	$\neg A \lor \neg B$	
2.	$C \rightarrow B$	2.	$\neg C \lor B$	
3.	А	3.	А	
4.	CVD	4.	CVD	
5.	$E \rightarrow F$	5.	$\neg E \lor F$	
		Con	Conclusion: D	

- B: the treasure is in the kitchen
- C: The tree in front is elm
- D: the treasure is under the flagpole.
- E: The tree in the back is oak
- F: The treasure is in the garage

Check validity of the argument using resolution

Resolution and Pigeons

- It is not that hard to write the Pigeonhole Principle as a tautology
- But we can prove that resolution has trouble with this kind of reasoning
 - the smallest resolution proof of this tautology is exponential size!
- By contrast, natural deduction (and you!) can figure it out fairly quickly

though it is not straightforward.

• The problem is that resolution cannot count.

But ability to count makes things harder...

Meow-stery

- One evening there was a cat fight in a family consisting of a mother cat, a father cat, and their son and daughter kittens.
- One of these four cats attacked and bit another!
- One of the cats watched the fight.
- The other one hissed at the fighters.
- These are the things we know for sure:

- www.clipartof.com · 50182
- 1. The watcher and the hisser were not of the same sex.
- 2. The oldest cat and the watcher were not of the same sex.
- 3. The youngest cat and the victim were not of the same sex.
- 4. The hissing cat was older than the victim.
- 5. The father was the oldest of the four.
- 6. The attacker was not the youngest of the four.
- Which nasty cat was the attacker?