

COMP 1002

Logic for Computer Scientists

Lecture 31

Analysis of algorithms

- Putting it all together:
 - Using **logic** to describe what an algorithm is doing
 - and **induction** to show that it does that correctly
 - Using recurrence relations to see how long it takes in the worst case.
 - With **O-notation** to talk about the time.
 - and probabilities/expectation to try to see how long it might take on average.

Example: search in an array

- Given:
 - an array A containing n elements,

- and a specific item x
- Goal: find the index of x in A, if x is in A.
 Which box contains ? Box 4.

Example: search in an array

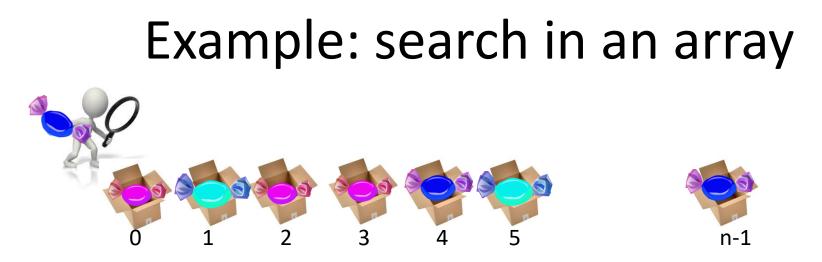
- Given:
 - an array A containing n elements,

- and a specific item x
- Goal: find the index of x in A, if x is in A.
 Which box contains ? Box 4.

Example: search in an array v = v = 0 v = 1 v = 0v =

- *Precondition*: what should be true before a piece of code (or the whole algorithm) starts
 - E.g.: A is an array of numbers and A is not empty and x is a number.
- Postcondition: what should be true after a program (piece of code) finished.
 - E.g. If the program returned value k, then A[k]=x

• or k=-1, if x is not in A.



• Precondition: A is an array containing x

• *Postcondition*: Returned k such that A[k]=x

• *Precondition*: A is an array containing x

```
Algorithm arraySearch(A, x)

Input array A of n integers, number x

Output k such that A[k]=x

i = 0

out = -1

while out < 0 do

if A[i] = x then

out = i

i = i+1

return out
```

• *Postcondition*: Returned k such that A[k]=x

arraySearch algorithm

```
Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x
\exists i \in \{0 ... n - 1\} A[i] = x
\mathbf{i} = 0
out = -1
\exists i \in \{0 ... n - 1\} A[i] = x \land i = 0 \land out = -1
while out < 0 do
      if A[i] = x then
            out =i
      i = i + 1
A[out] = x
return out
Program returned k such that A[k]=x
```

Loop invariant

- Loop invariant: a condition that is true on each iteration of the loop
 - Implied by loop precondition
 - Implies the loop postcondition
 - Implies next loop iteration is correct
- $I(k): i = k \land ((out = i \land A[out] = x) \lor (\exists j > i \land A[j] = x))$
- Guard condition: condition in the while loop
 G= "out <0"
- Loop is correct when:
 - precondition \rightarrow I(0)
 - for all k, $G \wedge I(k) \rightarrow I(k+1)$
 - If k_0 is the smallest number such that ¬*G*, then ¬*G* ∧ *I*(k_0) → postcondition
- **Termination**: proof that $\exists k_0$ such that after k_0 iterations G becomes false

```
\exists i \in \{0 \dots n - 1\} A[i] = x \land
 \land i = 0 \land out = -1
while out < 0 do
 if A[i] = x then
 out = i
 i = i+1
A[out] = x
```

Proving the loop invariant

 $\exists i \in \{0 \dots n-1\} A[i] = x \land \land i = 0 \land out = -1$

By induction on i: Base case: I(0)

$$- \exists i \in \{0 \dots n-1\} A[i] = x \land i = 0 \land \land out = -1$$

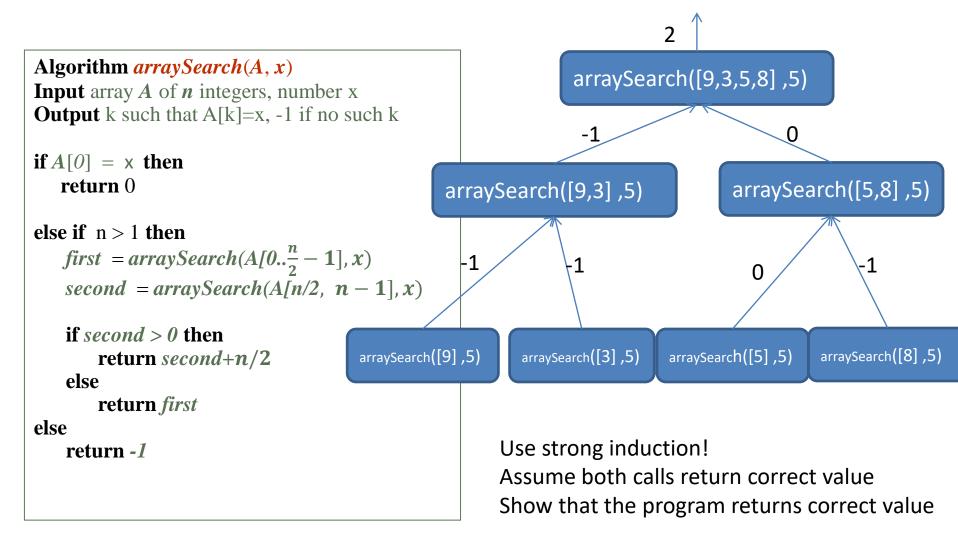
Implies I(0)

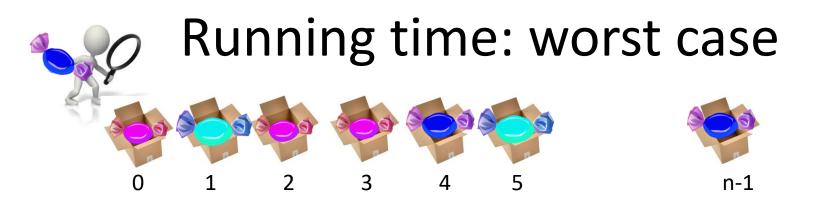
while out < 0 do
 if A[i] = x then
 out = i
 i = i+1
A[out] = x</pre>

 $- i = 0 \land ((out = 0 \land A[out] = x) \lor (\exists j > i \ A[j] = x))$

- Assume I(k): $i = k \land ((out = i \land A[out] = x) \lor (\exists j > i \land A[j] = x))$
- Show: if *G*, then I(k+1): $i = k + 1 \land ((out = i \land A[out] = x) \lor (\exists j > i \land A[j] = x))$
 - i=k+1 because of "i=i+1" statement
 - If A[i]=x, then $(out = i \land A[out] = x)$ holds
 - Otherwise, $(\exists j > i \ A[j] = x)$ holds.
- Otherwise, if $\neg G$, postcondition holds:
 - in this case, $(out = i \land A[out] = x)$ should have been true in I(k), for i=k.
 - So A[out]=x

Correctness of recursive programs





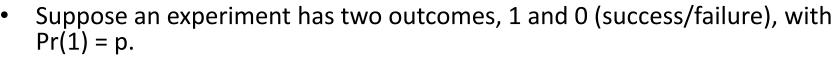
- Precondition: A is an array containing x
 - Therefore, in the worst scenario need to check all n boxes A[i]
 - Running time: O(n)

```
i = 0
out = -1
while out < 0 do
if A[i] = × then
out = i
i = i+1
return out
```


- What is the expected number of steps before x is found?
 - Depends on the probability of x being in each cell.
 - Or whether there is only one x, or can be many

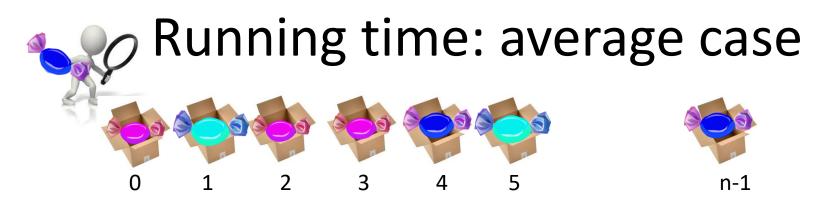
```
i = 0
out = -1
while out < 0 do
if A[i] = × then
out = i
i = i+1
return out
```



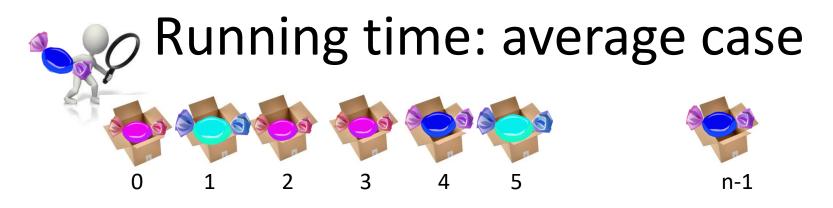
- Such experiment is called a **Bernoulli trial**.
- What happens if the experiment is repeated multiple times (independently from each other?)

- A sample space after carrying out n Bernoulli trials is a set of all possible n-tuples of elements in {0,1} (or {success, fail}).
- Number of n-tuples with k 1s is $\binom{n}{k}$
- Probability of getting 1 in any given trial is p, of getting 0 is (1-p).
- Probability of getting exactly k 1s (successes) out of n trials is $\binom{n}{k}p^k(1-p)^{n-k}$
 - Called binomial distribution
- Probability of getting the first success on exactly the k^{th} trial is $p(1-p)^{k-1}$
- How many trials do we need, on average, to get a success?



- Suppose probability of x being in any cell is p
 - Can have many x in A
- Then probability of finding x in k steps is $p(1-p)^{k-1}$
- Let random variable X denote the number of loop iterations till x is found
- $E(X) = \sum_{i \in \mathbb{N}} i * \Pr(X = i) = \frac{1}{n}$
- Expect to find x in O(1/p) steps

```
i = 0
out = -1
while out < 0 do
if A[i] = × then
out = i
i = i+1
return out
```



- Suppose there is just one x in A
- Probability of finding x in each step is $\frac{1}{n}$
- Let random variable X denote the number of loop iterations till x is found
- $E(X) = \sum_{i=n} i * \Pr(X = i) = \frac{1}{n} \sum_{i=1}^{n} i$ = (n+1)/2
- Expect to find x in the middle of A
- Running time O(n)

```
i = 0
out = -1
while out < 0 do
if A[i] = × then
out = i
i = i+1
return out
```


More to come...

- You will see a lot of algorithm analysis and use of the concepts we developed in COMP 2002 and beyond.
 - Logic, sets, relations and graphs for specification, modeling problems and describing what you are doing.
- Logic, induction and models of computation for proving program correctness and analysis of problem complexity.
- Recursive definitions of algorithms, counting and probability for algorithm performance and problem solving.
 - With the million dollar problem rearing its head every now and then

