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Analysis of algorithms

• Putting it all together: 
– Using logic to describe what an algorithm is doing

– and  induction to show that it does that correctly

– Using recurrence relations to see how long it takes in 
the worst case. 
• With O-notation to talk about the time. 

– and probabilities/expectation to try to see how long 
it might take on average. 



Example: search in an array

• Given:  
– an array A containing n elements, 

– and a specific item x

• Goal: find the index of x in A, if x is in A.  
– Which box contains        ?   Box 4.     
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Example: search in an array

• Precondition:  what should be true before a piece 
of code (or the whole algorithm) starts
– E.g.: A is an array of numbers and  A is not empty and  

x is a number. 

• Postcondition:  what should be true after a 
program (piece of code) finished.  
– E.g.  If the program returned value k, then A[k]=x

• or  k=-1,  if x is not in A. 
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Example: search in an array

• Precondition: A is an array containing x
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Example: search in an array

• Precondition: A is an array containing x

• Postcondition: Returned k such that A[k]=x 

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

i = 0
out = -1

while out < 0 do

if A[i] =  x  then

out = i

i = i+1

return out
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arraySearch algorithm

• A = [5,10,8,7]

• x = 8 

• out = 2

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

∃𝑖 ∈ 0…𝑛 − 1 𝐴 𝑖 = 𝑥

i = 0
out = -1 

∃𝑖 ∈ 0…𝑛 − 1 𝐴 𝑖 = 𝑥 ∧ 𝑖 = 0 ∧ 𝑜𝑢𝑡 = −1

while out < 0 do

if A[i] =  x  then

out = i

i = i+1

𝐴 𝑜𝑢𝑡 = 𝑥

return out

Program returned k such that A[k]=x



Loop invariant
• Loop invariant: a condition that is true on each iteration of the loop

– Implied by loop precondition
– Implies the loop postcondition
– Implies next loop iteration is correct 

• I(k):  𝑖 = 𝑘 ∧ ( 𝑜𝑢𝑡 = 𝑖 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 ∨ (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥))

• Guard condition:  condition in the while loop
– G= “out <0”

• Loop is correct when: 
– precondition  → I(0) 
– for all k,  G ∧ I k → I k + 1
– If k0 is the smallest number such that ¬𝐺,

then ¬𝐺 ∧ 𝐼 𝑘0 → postcondition

• Termination: proof that ∃ k0 such that after
k0 iterations G becomes false

∃𝑖 ∈ 0…𝑛 − 1 𝐴 𝑖 = 𝑥 ∧
∧ 𝑖 = 0 ∧ 𝑜𝑢𝑡 = −1

while out < 0 do

if A[i] =  x  then

out = i

i = i+1

𝐴 𝑜𝑢𝑡 = 𝑥



Proving the loop invariant
∃𝑖 ∈ 0…𝑛 − 1 𝐴 𝑖 = 𝑥 ∧
∧ 𝑖 = 0 ∧ 𝑜𝑢𝑡 = −1

while out < 0 do

if A[i] =  x  then

out = i

i = i+1

𝐴 𝑜𝑢𝑡 = 𝑥

• By induction on i:
• Base case: I(0)

– ∃𝑖 ∈ 0…𝑛 − 1 𝐴 𝑖 = 𝑥 ∧ 𝑖 = 0 ∧
∧ 𝑜𝑢𝑡 = −1

Implies  I(0)  

– 𝑖 = 0 ∧ ( 𝑜𝑢𝑡 = 0 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 ∨ (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥))

• Assume I(k):  𝑖 = 𝑘 ∧ ( 𝑜𝑢𝑡 = 𝑖 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 ∨ (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥))

• Show:  if 𝐺, then I(k+1):  𝑖 = 𝑘 + 1 ∧ ( 𝑜𝑢𝑡 = 𝑖 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 ∨ (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥))
• i=k+1 because of “i=i+1” statement
• If A[i]=x, then 𝑜𝑢𝑡 = 𝑖 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 holds
• Otherwise, (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥) holds. 

– Otherwise, if ¬𝐺,  postcondition holds: 
• in this case, 𝑜𝑢𝑡 = 𝑖 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 should have been true in I(k), for i=k. 
• So A[out]=x



Correctness of recursive programs

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x, -1 if no such k

if A[0] =  x  then

return 0

else if n > 1 then 

first = arraySearch(A[0..
𝒏

𝟐
− 𝟏], 𝒙)

second = arraySearch(A[n/2, 𝒏 − 𝟏], 𝒙)

if second > 0 then
return second+𝒏/𝟐

else
return first

else
return -1

arraySearch([9,3,5,8] ,5)

arraySearch([9,3] ,5) arraySearch([5,8] ,5)

arraySearch([9] ,5) arraySearch([5] ,5) arraySearch([8] ,5)arraySearch([3] ,5)

Use strong induction! 
Assume both calls return correct value
Show that the program returns correct value 

0-1-1 -1

-1 0

2



Running time: worst case 

• Precondition: A is an 
array containing x

– Therefore, in the worst 
scenario need to check 
all n boxes A[i] 

– Running time: O(n)

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

i = 0
out = -1
while out < 0 do

if A[i] =  x  then

out = i

i = i+1
return out

0           1            2            3            4           5                                    n-1 



Running time: average case 

• What is the expected 
number of steps before x 
is found? 

– Depends on the probability 
of x being in each cell. 

– Or whether there is only 
one x, or can be many 
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Input array A of n integers, number x
Output k such that A[k]=x

i = 0
out = -1
while out < 0 do

if A[i] =  x  then

out = i

i = i+1
return out



Bernoulli trials and  
repeated experiments

• Suppose an experiment has two outcomes, 1 and 0 (success/failure), with 
Pr(1) = p. 
– Such experiment is called a Bernoulli trial. 

• What happens if the experiment is repeated multiple times (independently 
from each other?)

– A sample space after carrying out n Bernoulli trials is a set of all possible n-tuples 
of elements in {0,1} (or {success, fail}).  

– Number of n-tuples with k 1s is 𝑛
𝑘

– Probability of getting 1 in any given  trial is p, of getting 0 is  (1-p).

– Probability of getting exactly k 1s (successes) out of n trials is 𝑛
𝑘
𝑝𝑘 1 − 𝑝 𝑛−𝑘

• Called binomial distribution

– Probability of getting the first success on exactly the 𝑘𝑡ℎ trial is 𝑝 1 − 𝑝 𝑘−1

• How many trials do we need, on average, to get a success?



Running time: average case 

• Suppose probability of x being in 
any cell is p
– Can have many x in A

• Then probability of finding x in k 
steps is 𝑝 1 − 𝑝 𝑘−1

• Let random variable X denote 
the number of  loop iterations 
till x is found

• E(X) = Σ𝑖∈ℕ 𝑖 ∗ Pr 𝑋 = 𝑖 =
1

𝑝

• Expect to find x in O(1/p) steps
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Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

i = 0
out = -1
while out < 0 do

if A[i] =  x  then

out = i

i = i+1
return out



Running time: average case 

• Suppose there is just one x in A

• Probability of finding x in each step is 
1

𝑛

• Let random variable X denote the 
number of  loop iterations till x is found

• E(X) = Σ𝑖=𝑛 𝑖 ∗ Pr 𝑋 = 𝑖 =
1

𝑛
Σ𝑖=1
𝑛 𝑖

= (𝑛 + 1)/2

• Expect to find x in the middle of A 
• Running time O(n)
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Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

i = 0
out = -1
while out < 0 do

if A[i] =  x  then

out = i

i = i+1
return out



More to come… 

• You will see a lot of algorithm analysis and use of the 
concepts we developed in COMP 2002 and beyond. 
– Logic, sets, relations and graphs  for specification, modeling 

problems  and describing what you are doing.  
– Logic, induction and models of computation for  proving 

program correctness and analysis of  problem complexity.
– Recursive definitions of algorithms, counting and probability for 

algorithm performance and problem solving. 
• With the million dollar problem rearing its head every now and then


