COMP 1002

Logic for Computer Scientists

Lecture 31

pEen

i
Ei-;i_

Analysis of algorithms

e Putting it all together:
— Using logic to describe what an algorithm is doing

— and induction to show that it does that correctly

— Using recurrence relations to see how long it takes in
the worst case.

 With O-notation to talk about the time.

— and probabilities/expectation to try to see how long
it might take on average.

Example: search in an array

.y
a)
Loy @

w
3 4 5 n-1

* Given:
— an array A containing n elements, ‘;
e e | 2
— and a specific item x @Qg

e Goal: find the index of x in A, if x is in A.
— Which box contains@Qg? Box 4. %:3

Example: search in an array

.y
a)
Loy @

w
3 4 5 n-1

* Given:
— an array A containing n elements, ‘;
e e | 2
— and a specific item x @Qg

e Goal: find the index of x in A, if x is in A.
— Which box contains@Qg? Box 4. %:3

Example: search in an array

0
2P B @ &
6 1 2 3 4 5

<

> ’3"“ ’v‘

3 4 5 n-1

* Precondition: what should be true before a piece
of code (or the whole algorithm) starts

— E.g.: Ais an array of numbers and A is not empty and
X is a number.

* Postcondition: what should be true after a
program (piece of code) finished. %j

— E.g. If the program returned value k, then A[k]=x
e or k=-1, if xis notin A. ‘

o

Example: search in an array

‘00
Y-t % Y T -
v vV Y'YV
n_

»5
4

* Precondition: A is an array containing x

e Postcondition: Returned k such that A[k]=x

-

N7 Example: search in an array
& ‘{x . u SR S, 3
e ees ®
0 2 3

1 4 5 n-1
* Precondition: A is an array containing x

5?‘@ { e)

Algorithm arraySearch(A, x)
Input array A of n integers, number X
Output k such that A[k]=x

while out <0 do
if Ali] = x then
out =1
I =1+1

return out

* Postcondition: Returned k such that A[k]=x

arraySearch algorithm

Algorithm arraySearch(A, x)

Input array A of n integers, number x
Output k such that A[k]=x
Jief{0..n—1} Ali] =x

=0
out=-1

Jie€{0..n—1} Ali]=x Ai=0Aout = -1
while out <0 do
if A[i] = x then
out =1
I=1+1
Alout] = x

return out

Program returned k such that A[k]=x

* A=[5108,7]
* X=8

e out=2

Loop invariant

Loop invariant: a condition that is true on each iteration of the loop

— Implied by loop precondition
— Implies the loop postcondition
— Implies next loop iteration is correct

I(k): i =k A((out =i ANAlout] =x)Vv (3j >1i Alj] = x))

Guard condition: condition in the while loop
— G=“out <0”

Loop is correct when:
— precondition — 1(0)
— forallk, GAI(k) » I(k+ 1)
— If ky is the smallest number such that =G,
then =G A I(ky) — postcondition

Termination: proof that 3 k, such that after

i€ {0..n—1} Ali] =x A
ANl=0Aout =-1

while out <0 do
If A[i] = x then
out =1
=i+l

Alout] = x

k, iterations G becomes false

Proving the loop invariant

Jie{0..n—1} Ali]=x A
. . . Al=0Aout =-1
By induction on i:
Base case: I(0) while out <0 do
iIf All] = x th
— 3€f0.n—1} A[i]=xAi=0A ' [']Out’;ie”
Aout = —1 i =i+
Implies 1(0)
Alout] = x

— i=0 A((out =0 AAlout] =x)v (3j >i A[j] = x))
Assume l(k): i =k A ((out =i ANAlout]| =x)Vv (3] > 1 Alj] = x))

Show: if G, thenl(k+1): i =k + 1 A ((out =i ANAlout] =x)Vv (3] >1i Alj] = x))
i=k+1 because of “i=i+1” statement
If A[i]=x, then (out =i A Alout] = x) holds

* Otherwise, (3j > i Alj| = x) holds.

Otherwise, if =G, postcondition holds:
in this case, (out = i A Alout| = x) should have been true in I(k), for i=k.
So Alout]=x

Correctness of recursive programs

Algorithm arraySearch(A, x)
Input array A of n integers, number X
Output k such that A[k]=x, -1 if no such k

arraySearch([9,3,5,8] ,5)

if A[O] = x then
return O

else if n>1 then
first = arraySearch(A[0. — 1], x)
second = arraySearch(A[n/2, n — 1], x)

if second > 0 then

return SeCOﬂd+n/2 arraySearch([9] ,5) arraySearch([3],5) arraySearch([5] ,5) arraySearch([8] ,5)
else
return first
else
return -1 Use strong induction!

Assume both calls return correct value
Show that the program returns correct value

@%KQ Running time: worst case

%} @’\)5@ %J %@i@"‘a

1

e Precondition: A is an
array containing X

— Therefore, in the worst
scenario need to check
all n boxes Ali]

— Running time: O(n)

n-1

Algorithm arraySearch(A, x)

Input array A of n integers, number X
Output k such that A[k]=x

1=0
out=-1
while out <0 do
If A[i] = x then
out =i
i=i+1
return out

KQ Running time: average case

G & SO

0 1 2 3 4 5

 What is the expected
number of steps before x
is found?
— Depends on the probability
of x being in each cell.

— Or whether there is only
one X, or can be many

Algorithm arraySearch(A, x)
Input array A of n integers, number X
Output k such that A[k]=x

1=0
out=-1
while out <0 do
If A[i] = x then
out =i
i=i+1
return out

_— e,
Bernoulli trials and &5

repeated experiments

« Suppose an experiment has two outcomes, 1 and 0 (success/failure), with
Pr(1) = p.

— Such experiment is called a Bernoulli trial.

 What happens if the experiment is repeated multiple times (independently
from each other?)

— A sample space after carrying out n Bernoulli trials is a set of all possible n-tuples
of elements in {0,1} (or {success, fail}).

— Number of n-tuples with k 1s is (’,;")
— Probability of getting 1 in any given trial is p, of getting O is (1-p).

— Probability of getting exactly k 1s (successes) out of n trials is (Z)pk(l —p)k
* Called binomial distribution

— Probability of getting the first success on exactly the k" trial is p(1 — p)*~1

* How many trials do we need, on average, to get a success?

%J(P Running time: average case

%)@‘3%9 LR Rt

1 3 4 5
* Suppose probability of x being in
any cell is p
— Can have many x in A
* Then probab/llty of f/nd/ng xin k
steps is p(1 — p)*

* let random variable X denote
the number of loop iterations
till x is found

e E(X)=Z;cyi*Pr(X =1i)= %
» Expect to find x in O(1/p) steps

-

n-1

Algorithm arraySearch(A, x)
Input array A of n integers, number X
Output k such that A[k]=x

1=0
out=-1
while out <0 do
if Ali] = x then
out =i
i=i+1
return out

KQ Running time: average case

%3@"‘9%3 ® & @gj
| 2 | _Z _ »
0

1 2 3 4 5

Suppose there is just one x in A Algorithm arraySearch(A, x)

Input array A of n integers, number X

" . . .1
Probability of finding x in each step is — | oitput k such that Alk]=x

=0

Let random variable X denote the out = -1
number of loop iterations till x is found | while out <0 do
. : 1lan . if A[i] = x then
E(X)=Zi—p i * Pr(X =1) = g2i=1l out =i
:(n-|—1)/2 I=i+1
return out

Expect to find x in the middle of A
Running time O(n)

a

4)

™ ;@,‘f
More to come...
iifi’u

1 2 \i'\\ ‘ﬂ
s ¢

* You will see a lot of algorithm analysis and use of the
concepts we developed in COMP 2002 and beyond.

— Logic, sets, relations and graphs for specification, modeling
problems and describing what you are doing.

— Logic, induction and models of computation for proving
program correctness and analysis of problem complexity.

— Recursive definitions of algorithms, counting and probability for
algorithm performance and problem solving.

e With the million dollar problem rearing its head every now and then

L
e @
o . K] -

I TEAV S T ATV 0N o

