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Tower of Hanoi game

• Rules of the game: 
– Start with all disks on the first peg. 
– At any step, can move a disk to another peg, as long as it is 

not placed on top of a smaller disk. 
– Goal:  move the whole tower onto the second peg. 

• Question:  how many steps are needed to move the 
tower of 8 disks? How about n disks?   



Recurrence relations

• Recurrence:  an equation that defines an 𝑛𝑡ℎ element 
in a sequence in terms of one or more of previous 
terms. 

• Think of 𝐹 𝑛 = 𝑠𝑛 for some sequence {𝑠𝑛}

– 𝐻(𝑛) = 2𝐻(𝑛 − 1) + 1

– 𝐹(𝑛) = 𝐹(𝑛 − 1) + 𝐹(𝑛 − 2)

• A closed form of a recurrence relation is an expression 
that defines an 𝑛𝑡ℎ element in a sequence in terms of 
𝑛 directly. 
– Often use recurrence relations and their closed forms to 

describe performance of (especially recursive) algorithms.



Closed forms of some sequences

• Arithmetic progression: 
– Sequence:  𝑐, 𝑐 + 𝑑, 𝑐 + 2𝑑, 𝑐 + 3𝑑,… , 𝑐 + 𝑛𝑑,…
– Closed form:  𝑠𝑛 = 𝑐 + 𝑛𝑑

• Closed forms are very useful for analysis of recursive programs, etc.

• Geometric progression: 
– Sequence:  𝑐, 𝑐𝑟, 𝑐𝑟2, 𝑐𝑟3, … , 𝑐𝑟𝑛, …
– Closed form: 𝑠𝑛 = 𝑐 ⋅ 𝑟𝑛

• Fibonacci sequence: F(n)=F(n-1)+F(n-2)
– Sequence: 1,1,2,3,5,8,13, …

– Closed form: 𝐹𝑛 = 𝜑𝑛− 1−𝜑 𝑛
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• Where 𝜑 (“phi”) is the “golden ratio”:  a ratio such that   
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Tower of Hanoi game

• Rules of the game: 
– Start with all disks on the first peg. 
– At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk. 
– Goal:  move the whole tower onto the second peg. 

• Question:  how many steps are needed to move the tower of 8 disks? How about n disks?   

• Let us call the number of moves needed to transfer n disks H(n). 
– Names of pegs do not matter:  from any peg 𝑖 to any peg 𝑗 ≠ 𝑖 would take the same number of 

steps.

• Basis:  only one disk can be transferred in one step. 
– So H(1) = 1 

• Recursive step:  
– suppose we have n-1 disks.  To transfer them all to peg 2, need 𝐻(𝑛 − 1) number of steps.  
– To transfer the remaining disk to peg 3, 1 step. 
– To transfer n-1 disks from peg 2 to peg 3 need  H(n-1) steps again. 
– So  H(n) = 2H(n-1)+1   (recurrence). 

• Closed form:  H(n) = 2𝑛 − 1.



• Solving a recurrence: finding a closed form. 

– Solving  the recurrence H(n)=2H(n-1)+1 

• H(n)  = 2 ⋅ 𝐻 𝑛 − 1 + 1

= 2 2𝐻 𝑛 − 2 + 1 + 1 = 22𝐻 𝑛 − 2 + 2 + 1

= 23𝐻 𝑛 − 3 + 22 + 2 + 1

= 24𝐻 𝑛 − 4 + 23 + 22 + 2 + 1…

– Closed form:  𝐻 𝑛 = Σ𝑖=0
𝑛−1 2𝑖 = 2𝑛 − 1

• Proof by induction

• Or by noticing that a binary number 111...1 plus 1 gives a 
binary number 10000…0  

Closed form for Tower of Hanoi



• So adding one more disk doubles the number of steps. 
– We say that the function defined by H(n) grows 

exponentially 
– 𝐻 𝑛 ∈ 𝑂 2𝑛 (and nothing slower-growing). 

• To say “nothing slower-growing”, use symbol Ω (uppercase omega): 
𝐻 𝑛 ∈ Ω 2𝑛

• To say “grows exactly like 2𝑛, use symbol Θ (uppercase theta):     
𝐻 𝑛 ∈ Ω 2𝑛

• Solving recurrences in general might be tricky. 
– When the recurrence is of the form T(n)=a T(n/b)+f(n), there 

is a  general method to estimate the growth rate of a 
function defined by the recurrence
• Called the Master Theorem for recurrences. 

Solving recurrences 



• Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ such that 𝑎 ≥ 1, 𝑏 ≥ 2, 𝑐 > 0
, 𝑑 ≥ 0, and let f(n) ∈ Θ 𝑛𝑐

• Let T(n) be the following recurrence relation:
– Base:  T(1) = d

– Recurrence:  𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑓(𝑛)

• Then the growth rate of T(n) is:

– If log𝑏𝑎 < 𝑐 then T 𝑛 ∈ Θ 𝑓 𝑛

– If log𝑏𝑎 = 𝑐 then T 𝑛 ∈ Θ 𝑓 𝑛 log 𝑛

– If log𝑏𝑎 > 𝑐 then T 𝑛 ∈ Θ 𝑛log𝑏 𝑎

Master theorem 
for solving recurrences



Analysis of algorithms

• Putting it all together: 
– Using logic to describe what an algorithm is doing

– and  induction to show that it does that correctly

– Using recurrence relations to see how long it takes in 
the worst case. 
• With O-notation to talk about the time. 

– and probabilities/expectation to try to see how long 
it might take on average. 



Example: search in an array

• Given:  
– an array A containing n elements, 

– and a specific item x

• Goal: find the index of x in A, if x is in A.  
– Which box contains        ?   Box 4.     

0           1            2            3            4           5                                    n-1 



Example: search in an array

• Given:  
– an array A containing n elements, 

– and a specific item x

• Goal: find the index of x in A, if x is in A.  
– Which box contains        ?   Box 4.     
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Example: search in an array

• Precondition:  what should be true before a piece 
of code (or the whole algorithm) starts
– E.g.: A is an array of numbers and  A is not empty and  

x is a number. 

• Postcondition:  what should be true after a 
program (piece of code) finished.  
– E.g.  If the program returned value k, then A[k]=x

• or  k=-1,  if x is not in A. 

0           1            2            3            4           5                                    n-1 



Example: search in an array

• Precondition: A is an array containing x

• Postcondition: Returned k such that A[k]=x 

0           1            2            3            4           5                                    n-1 



Example: search in an array

• Precondition: A is an array containing x

• Postcondition: Returned k such that A[k]=x 

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

i = 0
out = -1

while out < 0 do

if A[i] =  x  then

out = i

i = i+1

return out

0           1            2            3            4           5                                    n-1 



arraySearch algorithm

• A = [5,10,8,7]

• x = 8 

• out = 2

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

∃𝑖 ∈ 0…𝑛 − 1 𝐴 𝑖 = 𝑥

i = 0
out = -1 

∃𝑖 ∈ 0…𝑛 − 1 𝐴 𝑖 = 𝑥 ∧ 𝑖 = 0 ∧ 𝑜𝑢𝑡 = −1

while out < 0 do

if A[i] =  x  then

out = i

i = i+1

𝐴 𝑜𝑢𝑡 = 𝑥

return out

Program returned k such that A[k]=x



Loop invariant
• Loop invariant: a condition that is true on each iteration of the loop

– Implied by loop precondition
– Implies the loop postcondition
– Implies next loop iteration is correct 

• I(k):  𝑖 = 𝑘 ∧ ( 𝑜𝑢𝑡 = 𝑖 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 ∨ (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥))

• Guard condition:  condition in the while loop
– G= “out <0”

• Loop is correct when: 
– precondition  → I(0) 
– for all k,  G ∧ I k → I k + 1
– If k0 is the smallest number such that ¬𝐺,

then ¬𝐺 ∧ 𝐼 𝑘0 → postcondition

• Termination: proof that ∃ k0 such that after
k0 iterations G becomes false

∃𝑖 ∈ 0…𝑛 − 1 𝐴 𝑖 = 𝑥 ∧
∧ 𝑖 = 0 ∧ 𝑜𝑢𝑡 = −1

while out < 0 do

if A[i] =  x  then

out = i

i = i+1

𝐴 𝑜𝑢𝑡 = 𝑥



Proving the loop invariant
∃𝑖 ∈ 0…𝑛 − 1 𝐴 𝑖 = 𝑥 ∧
∧ 𝑖 = 0 ∧ 𝑜𝑢𝑡 = −1

while out < 0 do

if A[i] =  x  then

out = i

i = i+1

𝐴 𝑜𝑢𝑡 = 𝑥

• By induction on i:
• Base case: I(0)

– ∃𝑖 ∈ 0…𝑛 − 1 𝐴 𝑖 = 𝑥 ∧ 𝑖 = 0 ∧
∧ 𝑜𝑢𝑡 = −1

Implies  I(0)  

– 𝑖 = 0 ∧ ( 𝑜𝑢𝑡 = 0 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 ∨ (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥))

• Assume I(k):  𝑖 = 𝑘 ∧ ( 𝑜𝑢𝑡 = 𝑖 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 ∨ (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥))

• Show:  if 𝐺, then I(k+1):  𝑖 = 𝑘 + 1 ∧ ( 𝑜𝑢𝑡 = 𝑖 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 ∨ (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥))
• i=k+1 because of “i=i+1” statement
• If A[i]=x, then 𝑜𝑢𝑡 = 𝑖 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 holds
• Otherwise, (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥) holds. 

– Otherwise, if ¬𝐺,  postcondition holds: 
• in this case, 𝑜𝑢𝑡 = 𝑖 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 should have been true in I(k), for i=k. 
• So A[out]=x


