COMP 1002

Logic for Computer Scientists

Lecture 30

pEen

i
Ei-;i_



Tower of Hanoi game

* Rules of the game:
— Start with all disks on the first peg.

— At any step, can move a disk to another peg, as long as it is
not placed on top of a smaller disk.

— Goal: move the whole tower onto the second peg.

 Question: how many steps are needed to move the
tower of 8 disks? How about n disks?



Recurrence relations

 Recurrence: an equation that defines an nt"* element
in a sequence in terms of one or more of previous

terms.

* Think of F(n) = s, for some sequence {s,}
—Hn) = 2Hn—-1)+1
—F(n) = Fn—1)+F(n-2)

* Aclosed form of a recurrence relation is an expression
that defines an nt"* element in a sequence in terms of
n directly.

— Often use recurrence relations and their closed forms to
describe performance of (especially recursive) algorithms.



F oy
Closed forms of some sequences

e Arithmetic progression:
— Sequence: ¢,c+d,c+ 2d,c+ 3d,..,c +nd,..

— Closed form: s,,=c + nd
* Closed forms are very useful for analysis of recursive programs, etc.

* Geometric progression:
— Sequence: c,cr,cr?,cr3, ... cr™, ...

— Closed form: s, =c-r"

* Fibonacci sequence: F(n)=F(n-1)+F(n-2) /\

— Sequence: 1,1,2,3,5,8,13, ... / L, a b
— Closed form: F,, = ‘pn‘E/15‘¢)n ath

/n “JJ)y * (s . )] . b
* Where @ (“phi”)is the “golden ratio”: a ratio such that % = %

1++/5
¢ =




Tower of Hanoi game
-

*  Rules of the game:
— Start with all disks on the first peg.
— At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.
— Goal: move the whole tower onto the second peg.

* Question: how many steps are needed to move the tower of 8 disks? How about n disks?

* Let us call the number of moves needed to transfer n disks H(n).
— Names of pegs do not matter: from any peg i to any pegj # i would take the same number of

steps.
* Basis: only one disk can be transferred in one step.
— SoH(1)=1

* Recursive step:
— suppose we have n-1 disks. To transfer them all to peg 2, need H(n — 1) number of steps.
— To transfer the remaining disk to peg 3, 1 step.
— To transfer n-1 disks from peg 2 to peg 3 need H(n-1) steps again.
— So H(n)=2H(n-1)+1 (recurrence).

* Closed form: H(n)=2" — 1.



&8l

[ e e e

Closed form for Tower of Hanoi

* Solving a recurrence: finding a closed form.
— Solving the recurrence H(n)=2H(n-1)+1
* HnN)=2-Hn-1)+1
=2QHMm-2)+1D+1=2°Hn—-2)+2+1
=22Hn—-3)+2°+2+1
=2Hn—-4)+23+22+2+1..

— Closed form: H(n) = £t 2t =2 —1

* Proof by induction

* Or by noticing that a binary number 111...1 plus 1 gives a
binary number 10000...0



e

e — ==

Solving recurrences

* So adding one more disk doubles the number of steps.

— We say that the function defined by H(n) grows
exponentially
— H(n) € 0(2™) (and nothing slower-growing).

* To say “nothing slower-growing”, use symbol () (uppercase omega):
H(n) € Q(2")

* To say “grows exactly like 2™, use symbol © (uppercase theta):
H(n) € Q(2")

* Solving recurrences in general might be tricky.

— When the recurrence is of the form T(n)=a T(n/b)+f(n), there
is a general method to estimate the growth rate of a
function defined by the recurrence

e Called the Master Theorem for recurrences.



— If ]
— If ]

v

Master theorem =8
for solving recurrences

e leta,b,c,d € Rsuchthata=1, b>2,¢c>0
, d =0, and let f(n) € B(n°)

e Let T(n) be the following recurrence relation:
— Base: T(1) =d

— Recurrence: T(n) =aT (ED + f(n)
 Then the growth rate of T(n) is:

ogpa < c t
ogpa=c t

— If |

ogpa > c t

hen T(n) € @(f(n))
nen T(n) € O(f(n)logn)

hen T(n) € @(nlogb a )



Analysis of algorithms

e Putting it all together:
— Using logic to describe what an algorithm is doing

— and induction to show that it does that correctly

— Using recurrence relations to see how long it takes in
the worst case.

 With O-notation to talk about the time.

— and probabilities/expectation to try to see how long
it might take on average.



Example: search in an array

.y
a)
Loy @

w
3 4 5 n-1

* Given:
— an array A containing n elements, ‘;
e e | 2
— and a specific item x @Qg

e Goal: find the index of x in A, if x is in A.
— Which box contains@Qg? Box 4. %:3



Example: search in an array

.y
a)
Loy @

w
3 4 5 n-1

* Given:
— an array A containing n elements, ‘;
e e | 2
— and a specific item x @Qg

e Goal: find the index of x in A, if x is in A.
— Which box contains@Qg? Box 4. %:3



Example: search in an array

0
2P B @ &
6 1 2 3 4 5

<

> ’3"“ ’v‘

3 4 5 n-1

* Precondition: what should be true before a piece
of code (or the whole algorithm) starts

— E.g.: Ais an array of numbers and A is not empty and
X is a number.

* Postcondition: what should be true after a
program (piece of code) finished. %j

— E.g. If the program returned value k, then A[k]=x
e or k=-1, if xis notin A. ‘

o



Example: search in an array

‘00
Y-t % Y T -
v vV Y'YV
n_

»5
4

* Precondition: A is an array containing x

e Postcondition: Returned k such that A[k]=x

-



N7 Example: search in an array
& ‘{x . u SR S, 3
e ees  ®
0 2 3

1 4 5 n-1
* Precondition: A is an array containing x

5?‘@ { e)

Algorithm arraySearch(A, x)
Input array A of n integers, number X
Output k such that A[k]=x

while out <0 do
if Ali] = x then
out =1
I =1+1

return out

* Postcondition: Returned k such that A[k]=x




arraySearch algorithm

Algorithm arraySearch(A, x)

Input array A of n integers, number x
Output k such that A[k]=x
Jief{0..n—1} Ali] =x

=0
out=-1

Jie€{0..n—1} Ali]=x Ai=0Aout = -1
while out <0 do
if A[i] = x then
out =1
I=1+1
Alout] = x

return out

Program returned k such that A[k]=x

* A=[5108,7]
* X=8

e out=2



Loop invariant

Loop invariant: a condition that is true on each iteration of the loop

— Implied by loop precondition
— Implies the loop postcondition
— Implies next loop iteration is correct

I(k): i =k A((out =i ANAlout] =x)Vv (3j >1i Alj] = x))

Guard condition: condition in the while loop
— G=“out <0”

Loop is correct when:
— precondition — 1(0)
— forallk, GAI(k) » I(k+ 1)
— If ky is the smallest number such that =G,
then =G A I(ky) — postcondition

Termination: proof that 3 k, such that after

i€ {0..n—1} Ali] =x A
ANl=0Aout =-1

while out <0 do
If A[i] = x then
out =1
=i+l

Alout] = x

k, iterations G becomes false




Proving the loop invariant

Jie{0..n—1} Ali]=x A
. . . Al=0Aout =-1
By induction on i:
Base case: I(0) while out <0 do
iIf All] = x th
— 3€f0.n—1} A[i]=xAi=0A ' [']Out’;ie”
Aout = —1 i =i+
Implies 1(0)
Alout] = x

— i=0 A((out =0 AAlout] =x)v (3j >i A[j] = x))
Assume l(k): i =k A ((out =i ANAlout]| =x)Vv (3] > 1 Alj] = x))

Show: if G, thenl(k+1): i =k + 1 A ((out =i ANAlout] =x)Vv (3] >1i Alj] = x))
i=k+1 because of “i=i+1” statement
If A[i]=x, then (out =i A Alout] = x) holds

*  Otherwise, (3j > i Alj| = x) holds.

Otherwise, if =G, postcondition holds:
in this case, (out = i A Alout| = x) should have been true in I(k), for i=k.
So Alout]=x



