COMP 1002

Logic for Computer Scientists

Lecture 30
Tower of Hanoi game

- **Rules of the game:**
 - Start with all disks on the first peg.
 - At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.
 - Goal: move the whole tower onto the second peg.

- **Question:** how many steps are needed to move the tower of 8 disks? How about n disks?
Recurrence relations

• **Recurrence**: an equation that defines an n^{th} element in a sequence in terms of one or more of previous terms.
 - Think of $F(n) = s_n$ for some sequence $\{s_n\}$
 - $H(n) = 2H(n - 1) + 1$
 - $F(n) = F(n - 1) + F(n - 2)$

• A **closed form** of a recurrence relation is an expression that defines an n^{th} element in a sequence in terms of n directly.
 - Often use recurrence relations and their closed forms to describe performance of (especially recursive) algorithms.
Closed forms of some sequences

• Arithmetic progression:
 – Sequence: \(c, c + d, c + 2d, c + 3d, \ldots, c + nd, \ldots \)
 – Closed form: \(s_n = c + nd \)
 • Closed forms are very useful for analysis of recursive programs, etc.

• Geometric progression:
 – Sequence: \(c, cr, cr^2, cr^3, \ldots, cr^n, \ldots \)
 – Closed form: \(s_n = c \cdot r^n \)

• Fibonacci sequence: \(F(n) = F(n-1) + F(n-2) \)
 – Sequence: 1, 1, 2, 3, 5, 8, 13, ...
 – Closed form: \(F_n = \frac{\phi^n - (1-\phi)^n}{\sqrt{5}} \)
 • Where \(\phi ("\text{phi}"") \) is the “golden ratio”: a ratio such that \(\frac{a+b}{a} = \frac{a}{b} \)
 • \(\phi = \frac{1+\sqrt{5}}{2} \)
Tower of Hanoi game

• Rules of the game:
 – Start with all disks on the first peg.
 – At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.
 – Goal: move the whole tower onto the second peg.
• Question: how many steps are needed to move the tower of 8 disks? How about n disks?
• Let us call the number of moves needed to transfer n disks $H(n)$.
 – Names of pegs do not matter: from any peg i to any peg $j \neq i$ would take the same number of steps.
• Basis: only one disk can be transferred in one step.
 – So $H(1) = 1$
• Recursive step:
 – suppose we have n-1 disks. To transfer them all to peg 2, need $H(n - 1)$ number of steps.
 – To transfer the remaining disk to peg 3, 1 step.
 – To transfer n-1 disks from peg 2 to peg 3 need $H(n-1)$ steps again.
 – So $H(n) = 2H(n-1)+1$ (recurrence).
• Closed form: $H(n) = 2^n - 1$.
Closed form for Tower of Hanoi

• Solving a recurrence: finding a closed form.
 – Solving the recurrence \(H(n) = 2H(n-1) + 1 \)
 • \(H(n) = 2 \cdot H(n - 1) + 1 \)
 \[= 2(2H(n - 2) + 1) + 1 = 2^2H(n - 2) + 2 + 1 \]
 \[= 2^3H(n - 3) + 2^2 + 2 + 1 \]
 \[= 2^4H(n - 4) + 2^3 + 2^2 + 2 + 1 \ldots \]

 – Closed form: \(H(n) = \sum_{i=0}^{n-1} 2^i = 2^n - 1 \)
 • Proof by induction
 • Or by noticing that a binary number 111\ldots1 plus 1 gives a binary number 10000\ldots0
Solving recurrences

• So adding one more disk doubles the number of steps.
 – We say that the function defined by $H(n)$ grows exponentially
 – $H(n) \in O(2^n)$ (and nothing slower-growing).
 • To say “nothing slower-growing”, use symbol Ω (uppercase omega):
 $H(n) \in \Omega(2^n)$
 • To say “grows exactly like 2^n, use symbol Θ (uppercase theta):
 $H(n) \in \Omega(2^n)$

• Solving recurrences in general might be tricky.
 – When the recurrence is of the form $T(n)=a \ T(n/b)+f(n)$, there is a general method to estimate the growth rate of a function defined by the recurrence
 • Called the Master Theorem for recurrences.
Master theorem for solving recurrences

• Let $a, b, c, d \in \mathbb{R}$ such that $a \geq 1$, $b \geq 2$, $c > 0$, $d \geq 0$, and let $f(n) \in \Theta(n^c)$

• Let $T(n)$ be the following recurrence relation:
 – Base: $T(1) = d$
 – Recurrence: $T(n) = a \cdot T\left(\left\lfloor \frac{n}{b} \right\rfloor\right) + f(n)$

• Then the growth rate of $T(n)$ is:
 – If $\log_b a < c$ then $T(n) \in \Theta(f(n))$
 – If $\log_b a = c$ then $T(n) \in \Theta(f(n) \log n)$
 – If $\log_b a > c$ then $T(n) \in \Theta(n^{\log_b a})$
Analysis of algorithms

• Putting it all together:
 – Using logic to describe what an algorithm is doing
 – and induction to show that it does that correctly
 – Using recurrence relations to see how long it takes in the worst case.
 • With O-notation to talk about the time.
 – and probabilities/expectation to try to see how long it might take on average.
Example: search in an array

- Given:
 - an array A containing n elements,
 - and a specific item x

- Goal: find the index of x in A, if x is in A.
 - Which box contains blue candy? Box 4.
Example: search in an array

• Given:
 – an array A containing n elements,
 – and a specific item x

• Goal: find the index of x in A, if x is in A.
 – Which box contains \(x \)? Box 4.
Example: search in an array

• **Precondition**: what should be true before a piece of code (or the whole algorithm) starts
 – E.g.: A is an array of numbers and A is not empty and x is a number.

• **Postcondition**: what should be true after a program (piece of code) finished.
 – E.g. If the program returned value k, then A[k]=x
 • or k=-1, if x is not in A.
Example: search in an array

- **Precondition**: A is an array containing x

- **Postcondition**: Returned k such that A[k]=x
Example: search in an array

- **Precondition**: A is an array containing x

- **Postcondition**: Returned k such that A[k]=x

```plaintext
Algorithm `arraySearch(A, x)`
Input array A of n integers, number x
Output k such that A[k]=x

i = 0
out = -1

while out < 0 do
    if A[i] = x then
        out = i
        i = i + 1
    end if
end while

return out
```

- **Postcondition**: Returned k such that A[k]=x
arraySearch algorithm

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

\[\exists i \in \{0 \ldots n-1\} \ A[i] = x \]

i = 0
out = -1

\[\exists i \in \{0 \ldots n-1\} \ A[i] = x \land i = 0 \land out = -1 \]

while out < 0 do
 if A[i] = x then
 out = i
 i = i+1

A[out] = x

return out

Program returned k such that A[k]=x

- A = [5,10,8,7]
- x = 8
- out = 2
Loop invariant

- **Loop invariant**: a condition that is true on each iteration of the loop
 - Implied by loop precondition
 - Implies the loop postcondition
 - Implies next loop iteration is correct

- $l(k): i = k \land ((out = i \land A[out] = x) \lor (\exists j > i \ A[j] = x))$

- Guard condition: condition in the while loop
 - $G = \text{“out <0“}$

- Loop is correct when:
 - precondition $\rightarrow l(0)$
 - for all k, $G \land l(k) \rightarrow l(k + 1)$
 - If k_0 is the smallest number such that $\neg G$, then $\neg G \land l(k_0) \rightarrow$ postcondition

- **Termination**: proof that $\exists k_0$ such that after k_0 iterations G becomes false

```plaintext
\exists i \in \{0 \ldots n - 1\} \ A[i] = x \land 
\land i = 0 \land out = -1

while out < 0 do
  if $A[i] = x$ then
    out = i
  i = i+1
A[out] = x
```
Proving the loop invariant

- By induction on i:
- Base case: I(0)
 - \(\exists i \in \{0 \ldots n - 1\} \ A[i] = x \land i = 0 \land \land out = -1 \)
 - Implies I(0)

 - \(i = 0 \land ((out = 0 \land A[out] = x) \lor (\exists j > i \ A[j] = x)) \)

- Assume I(k): \(i = k \land ((out = i \land A[out] = x) \lor (\exists j > i \ A[j] = x)) \)

- Show: if \(G \), then I(k+1): \(i = k + 1 \land ((out = i \land A[out] = x) \lor (\exists j > i \ A[j] = x)) \)
 - \(i=k+1 \) because of “i=i+1” statement
 - If A[i]=x, then \((out = i \land A[out] = x)\) holds
 - Otherwise, \((\exists j > i \ A[j] = x)\) holds.

- Otherwise, if \(\neg G \), postcondition holds:
 - in this case, \((out = i \land A[out] = x)\) should have been true in I(k), for i=k.
 - So A[out]=x