
Lecture 30

COMP 1002

Logic for Computer Scientists

B J25

Tower of Hanoi game

• Rules of the game:
– Start with all disks on the first peg.
– At any step, can move a disk to another peg, as long as it is

not placed on top of a smaller disk.
– Goal: move the whole tower onto the second peg.

• Question: how many steps are needed to move the
tower of 8 disks? How about n disks?

Recurrence relations

• Recurrence: an equation that defines an 𝑛𝑡ℎ element
in a sequence in terms of one or more of previous
terms.

• Think of 𝐹 𝑛 = 𝑠𝑛 for some sequence {𝑠𝑛}

– 𝐻(𝑛) = 2𝐻(𝑛 − 1) + 1

– 𝐹(𝑛) = 𝐹(𝑛 − 1) + 𝐹(𝑛 − 2)

• A closed form of a recurrence relation is an expression
that defines an 𝑛𝑡ℎ element in a sequence in terms of
𝑛 directly.
– Often use recurrence relations and their closed forms to

describe performance of (especially recursive) algorithms.

Closed forms of some sequences

• Arithmetic progression:
– Sequence: 𝑐, 𝑐 + 𝑑, 𝑐 + 2𝑑, 𝑐 + 3𝑑,… , 𝑐 + 𝑛𝑑,…
– Closed form: 𝑠𝑛 = 𝑐 + 𝑛𝑑

• Closed forms are very useful for analysis of recursive programs, etc.

• Geometric progression:
– Sequence: 𝑐, 𝑐𝑟, 𝑐𝑟2, 𝑐𝑟3, … , 𝑐𝑟𝑛, …
– Closed form: 𝑠𝑛 = 𝑐 ⋅ 𝑟𝑛

• Fibonacci sequence: F(n)=F(n-1)+F(n-2)
– Sequence: 1,1,2,3,5,8,13, …

– Closed form: 𝐹𝑛 = 𝜑𝑛− 1−𝜑 𝑛

√5

• Where 𝜑 (“phi”) is the “golden ratio”: a ratio such that
𝑎+𝑏

𝑎
=

𝑎

𝑏

• 𝜑 =
1+ 5

2

Tower of Hanoi game

• Rules of the game:
– Start with all disks on the first peg.
– At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.
– Goal: move the whole tower onto the second peg.

• Question: how many steps are needed to move the tower of 8 disks? How about n disks?

• Let us call the number of moves needed to transfer n disks H(n).
– Names of pegs do not matter: from any peg 𝑖 to any peg 𝑗 ≠ 𝑖 would take the same number of

steps.

• Basis: only one disk can be transferred in one step.
– So H(1) = 1

• Recursive step:
– suppose we have n-1 disks. To transfer them all to peg 2, need 𝐻(𝑛 − 1) number of steps.
– To transfer the remaining disk to peg 3, 1 step.
– To transfer n-1 disks from peg 2 to peg 3 need H(n-1) steps again.
– So H(n) = 2H(n-1)+1 (recurrence).

• Closed form: H(n) = 2𝑛 − 1.

• Solving a recurrence: finding a closed form.

– Solving the recurrence H(n)=2H(n-1)+1

• H(n) = 2 ⋅ 𝐻 𝑛 − 1 + 1

= 2 2𝐻 𝑛 − 2 + 1 + 1 = 22𝐻 𝑛 − 2 + 2 + 1

= 23𝐻 𝑛 − 3 + 22 + 2 + 1

= 24𝐻 𝑛 − 4 + 23 + 22 + 2 + 1…

– Closed form: 𝐻 𝑛 = Σ𝑖=0
𝑛−1 2𝑖 = 2𝑛 − 1

• Proof by induction

• Or by noticing that a binary number 111...1 plus 1 gives a
binary number 10000…0

Closed form for Tower of Hanoi

• So adding one more disk doubles the number of steps.
– We say that the function defined by H(n) grows

exponentially
– 𝐻 𝑛 ∈ 𝑂 2𝑛 (and nothing slower-growing).

• To say “nothing slower-growing”, use symbol Ω (uppercase omega):
𝐻 𝑛 ∈ Ω 2𝑛

• To say “grows exactly like 2𝑛, use symbol Θ (uppercase theta):
𝐻 𝑛 ∈ Ω 2𝑛

• Solving recurrences in general might be tricky.
– When the recurrence is of the form T(n)=a T(n/b)+f(n), there

is a general method to estimate the growth rate of a
function defined by the recurrence
• Called the Master Theorem for recurrences.

Solving recurrences

• Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ such that 𝑎 ≥ 1, 𝑏 ≥ 2, 𝑐 > 0
, 𝑑 ≥ 0, and let f(n) ∈ Θ 𝑛𝑐

• Let T(n) be the following recurrence relation:
– Base: T(1) = d

– Recurrence: 𝑇 𝑛 = 𝑎 𝑇
𝑛

𝑏
+ 𝑓(𝑛)

• Then the growth rate of T(n) is:

– If log𝑏𝑎 < 𝑐 then T 𝑛 ∈ Θ 𝑓 𝑛

– If log𝑏𝑎 = 𝑐 then T 𝑛 ∈ Θ 𝑓 𝑛 log 𝑛

– If log𝑏𝑎 > 𝑐 then T 𝑛 ∈ Θ 𝑛log𝑏 𝑎

Master theorem
for solving recurrences

Analysis of algorithms

• Putting it all together:
– Using logic to describe what an algorithm is doing

– and induction to show that it does that correctly

– Using recurrence relations to see how long it takes in
the worst case.
• With O-notation to talk about the time.

– and probabilities/expectation to try to see how long
it might take on average.

Example: search in an array

• Given:
– an array A containing n elements,

– and a specific item x

• Goal: find the index of x in A, if x is in A.
– Which box contains ? Box 4.

0 1 2 3 4 5 n-1

Example: search in an array

• Given:
– an array A containing n elements,

– and a specific item x

• Goal: find the index of x in A, if x is in A.
– Which box contains ? Box 4.

0 1 2 3 4 5 n-1

Example: search in an array

• Precondition: what should be true before a piece
of code (or the whole algorithm) starts
– E.g.: A is an array of numbers and A is not empty and

x is a number.

• Postcondition: what should be true after a
program (piece of code) finished.
– E.g. If the program returned value k, then A[k]=x

• or k=-1, if x is not in A.

0 1 2 3 4 5 n-1

Example: search in an array

• Precondition: A is an array containing x

• Postcondition: Returned k such that A[k]=x

0 1 2 3 4 5 n-1

Example: search in an array

• Precondition: A is an array containing x

• Postcondition: Returned k such that A[k]=x

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

i = 0
out = -1

while out < 0 do

if A[i] = x then

out = i

i = i+1

return out

0 1 2 3 4 5 n-1

arraySearch algorithm

• A = [5,10,8,7]

• x = 8

• out = 2

Algorithm arraySearch(A, x)
Input array A of n integers, number x
Output k such that A[k]=x

∃𝑖 ∈ 0…𝑛 − 1 𝐴 𝑖 = 𝑥

i = 0
out = -1

∃𝑖 ∈ 0…𝑛 − 1 𝐴 𝑖 = 𝑥 ∧ 𝑖 = 0 ∧ 𝑜𝑢𝑡 = −1

while out < 0 do

if A[i] = x then

out = i

i = i+1

𝐴 𝑜𝑢𝑡 = 𝑥

return out

Program returned k such that A[k]=x

Loop invariant
• Loop invariant: a condition that is true on each iteration of the loop

– Implied by loop precondition
– Implies the loop postcondition
– Implies next loop iteration is correct

• I(k): 𝑖 = 𝑘 ∧ (𝑜𝑢𝑡 = 𝑖 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 ∨ (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥))

• Guard condition: condition in the while loop
– G= “out <0”

• Loop is correct when:
– precondition → I(0)
– for all k, G ∧ I k → I k + 1
– If k0 is the smallest number such that ¬𝐺,

then ¬𝐺 ∧ 𝐼 𝑘0 → postcondition

• Termination: proof that ∃ k0 such that after
k0 iterations G becomes false

∃𝑖 ∈ 0…𝑛 − 1 𝐴 𝑖 = 𝑥 ∧
∧ 𝑖 = 0 ∧ 𝑜𝑢𝑡 = −1

while out < 0 do

if A[i] = x then

out = i

i = i+1

𝐴 𝑜𝑢𝑡 = 𝑥

Proving the loop invariant
∃𝑖 ∈ 0…𝑛 − 1 𝐴 𝑖 = 𝑥 ∧
∧ 𝑖 = 0 ∧ 𝑜𝑢𝑡 = −1

while out < 0 do

if A[i] = x then

out = i

i = i+1

𝐴 𝑜𝑢𝑡 = 𝑥

• By induction on i:
• Base case: I(0)

– ∃𝑖 ∈ 0…𝑛 − 1 𝐴 𝑖 = 𝑥 ∧ 𝑖 = 0 ∧
∧ 𝑜𝑢𝑡 = −1

Implies I(0)

– 𝑖 = 0 ∧ (𝑜𝑢𝑡 = 0 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 ∨ (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥))

• Assume I(k): 𝑖 = 𝑘 ∧ (𝑜𝑢𝑡 = 𝑖 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 ∨ (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥))

• Show: if 𝐺, then I(k+1): 𝑖 = 𝑘 + 1 ∧ (𝑜𝑢𝑡 = 𝑖 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 ∨ (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥))
• i=k+1 because of “i=i+1” statement
• If A[i]=x, then 𝑜𝑢𝑡 = 𝑖 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 holds
• Otherwise, (∃𝑗 > 𝑖 𝐴 𝑗 = 𝑥) holds.

– Otherwise, if ¬𝐺, postcondition holds:
• in this case, 𝑜𝑢𝑡 = 𝑖 ∧ 𝐴 𝑜𝑢𝑡 = 𝑥 should have been true in I(k), for i=k.
• So A[out]=x

