Admin stuff

• Make-up lecture next Monday, Jan 14
• 10am to 12pm in C 3033
Knights and knaves

• On a mystical island, there are two kinds of people: knights and knaves. Knights always tell the truth. Knaves always lie.

• Puzzle 1: You meet two people on the island, Arnold and Bob. Arnold says “Either I am a knave, or Bob is a knight”. Is Arnold a knight or a knave? What about Bob?
Knights and knaves

• Puzzle 1: You meet two people on the island, Arnold and Bob. Arnold says “Either I am a knave, or Bob is a knight”. Is Arnold a knight or a knave? What about Bob?
 – A: Arnold is a knight
 – B: Bob is a knight
 – Formula: \(\neg A \lor B \): “Either Arnold is a knave, or Bob is a knight”
 – Want: scenarios where either both A is a knight and the formula is true, or A is a knave and the formula is false. Use “if and only if” notation: \((\neg A \lor B) \leftrightarrow A\). True if both formulas have same value

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(\neg A)</th>
<th>(\neg A \lor B)</th>
<th>((\neg A \lor B) \leftrightarrow A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>
Special types of sentences

• A sentence that has a satisfying assignment is **satisfiable**.
 – Some row in the truth table ends with **True**.
 – Example: \(B \rightarrow A \)

• Sentence is a **contradiction**:
 – All assignments are falsifying.
 – All rows end with **False**.
 – Example: \(A \land \neg A \)

• Sentence is a **tautology**:
 – All assignments are satisfying
 – All rows end with **True**.
 – Example: \(B \rightarrow A \lor B \)
Determining formula type

• How long does it take to check if a formula is satisfiable?
 – If somebody gives you a satisfying assignment, then in time roughly the size of the formula.
 • On a m-symbol formula, take time $O(m) = \text{constant} \times m$, for some constant depending on the computer/software.
 – What if you don’t know a satisfying assignment? How hard it is to find it?
 • Using a truth table: in time $O(m \times 2^n)$ on a length m n-variable formula.
 • Is it efficient?...
Complexity of computation

• Would you still consider a problem really solvable if it takes very long time?
 – Say 10^n steps on an n-symbol string?
 – At a billion (10^9) steps per second (~1GHz)?
 – To process a string of length 100...
 – will take $10^{100}/10^9$ seconds, or $\sim 3 \times 10^{72}$ centuries.

 – Age of the universe: about 1.38×10^{10} years.
 – Atoms in the observable universe: $10^{78}-10^{82}$.
Complexity of computation

- What strings do we work with in real life?
 - A DNA string has 3.2×10^9 base pairs
 - A secure key in crypto: 128-256 bits
 - Number of Walmart transactions per day: 10^6.
 - URLs searched by Google in 2012: 3×10^{12}.
Determining formula type

• How long does it take to check if a formula is satisfiable?
 – Using a truth table: in time $O(m \times 2^n)$ on a length m n-variable formula.
 – Is it efficient?
 • Not really!
 • Formula with 100 variables is already too big!
 • In software verification: millions of variables!
 – Can we do better?

A million-dollar question!
Logical equivalence

• Two formulas F and G are logically equivalent \((F \iff G)\) if they have the same value for every row in the truth table on their variables.

 – \(A \land \neg A \equiv False\) (same as saying it is a contradiction)

 – \((\neg A \lor B) \equiv (A \rightarrow B)\)

 – \((A \leftrightarrow B) \equiv (A \rightarrow B) \land (B \rightarrow A)\)

 • \(\iff\) is sometimes called the “biconditional”

 • \(\iff\) often pronounced as “if and only if”, or “iff”

• Useful fact: proving that \(F \equiv G\) can be done by proving that \(F \leftrightarrow G\) is a tautology
Double negation

• Negation cancels negation
 – \(\neg \neg A \equiv A \)
 – “I do not disagree with you” = “I agree with you”

• For a human brain, harder to parse a sentence with multiple negations:
 – Alice says: “I refuse to vote against repealing the ban on smoking in public. “
 • Does Alice like smoking in public or hate it?
De Morgan’s Laws

• Simplifying negated formulas
 – For AND: \(\neg (A \land B) \) is equivalent to \((\neg A \lor \neg B) \)
 – For OR: \(\neg (A \lor B) \equiv (\neg A \land \neg B) \)

• Example:
 – \(\neg (\neg A \lor B) \) is \(\neg \neg A \land \neg B \), same as \(A \land \neg B \)
 – So, since \((A \rightarrow B) \) is equivalent to \((\neg A \lor B) \),
 \(\neg (A \rightarrow B) \) is equivalent to \(A \land \neg B \)
De Morgan’s laws: examples

— Let A be “it’s sunny” and B “it’s cold”.
 • “It’s sunny and cold today”! — No, it’s not!
 • That could mean
 — No, it’s not sunny.
 — No, it’s not cold.
 — No, it’s neither sunny nor cold.
 • In all of these scenarios, “It’s either not sunny or not cold” is true.

— Let A be “$x < 2$”, B be “$x > 4$”.
 • “Either $x < 2$ or $x > 4$” — No, it is not!
 • Then $2 \leq x \leq 4$
More examples

– Let A be “I play” and B “I win”.

 • $A \rightarrow B$: “If I play, then I win”

 • Equivalent to $\neg A \lor B$: “Either I do not play, or I win”.

– Negation: $\neg(A \rightarrow B)$: “It is not so that if I play then I win”.

 • By de Morgan’s law: $\neg(\neg A \lor B) \equiv (\neg\neg A \land \neg B)$

 • By double negation: $(\neg\neg A \land \neg B) \equiv (A \land \neg B)$

 • So negation of “If I play then I win” is “I play and I don’t win”.
Longer example of negation

• Start with the outermost connective and keep applying de Morgan’s laws and double negation.
• Stop when all negations are on variables.

• \(\neg ((A \lor \neg B) \rightarrow (\neg A \land C)) \)
 • \((A \lor \neg B) \land \neg(\neg A \land C) \) (negating \(\rightarrow \))
 • \((A \lor \neg B) \land (\neg \neg A \lor \neg C) \) (de Morgan)
 • \((A \lor \neg B) \land (A \lor \neg C) \) (removing \(\neg \neg \))
Knights and knaves

• On a mystical island, there are two kinds of people: knights and knaves. Knights always tell the truth. Knaves always lie.

• Puzzle 2: You see three islanders talking to each other, Arnold, Bob and Charlie.
 – You ask Arnold “Are you a knight?”, but can’t hear what he answered.
 – Bob pitches in: “Arnold said that he is a knave!”
 – and Charlie interjects “Don’t believe Bob, he’s lying”.
 – Out of Bob and Charlie, who is a knight/knave?