

COMP 1002

Logic for Computer Scientists

Lecture 27

Puzzle: misspelling OSOYOOS

- In the game of Scrabble, players make words out of the pieces they have.
 - Suppose that someone puts the word "OSOYOOS" on the board, using up all her pieces.
 - How many ways could she have had the letters arranged on the rack in front of them?
 - The order of multiple copies of a letter does not matter: switching two S around results in the same sequence, but switching O and S does not.
 - The letters on the rack do not have to form a word.

Puzzle: misspelling OSOYOOS

- Suppose that someone puts the word "OSOYOOS" on the board, using up all her pieces.
- How many ways could she have had the letters arranged on the rack in front of them?
 - There are 7 letters in the word OSOYOOS. If they were all distinct, that would be 7! = 5040 ways.
 - But there are 4 Os, and 2 Ss, order of which does not matter.
 - There are 4! ways to order Os, and 2! ways to order Ss.
 - Therefore, the total number of ways to order the letters ignoring the order of Os and Ss is $7!/_{4!2!} = 105$

Puzzle: misspelling OSOYOOS

- Suppose that someone puts the word "OSOYOOS" on the board, using up all her pieces.
- How many ways could she have had the letters arranged on the rack in front of them, such that Ss are not next to each other?
 - First, let's consider all possible orderings of remaining letters: 5!/4! of them.
 - Now, consider places where S can go: _o_o_y_o_o_ (here, ooyoo are in arbitrary order). There are 6 such places.
 - So there are $\binom{6}{2} = \frac{6!}{2!4!}$ ways to place Ss.
 - Therefore, the total number of ways to order the letters ignoring the order of Os and Ss and with Ss not next to each other is $\frac{5!6!}{4!4!2!} = 75$
 - Alternatively, consider all orderings with Ss next to each other: there are $\frac{6!}{4!} = 30$ of them (treating the "SS" as a single letter).
 - Now, the total is 105-30 = 75.

Summary

Selecting k out of n objects	Order matters (permutations)	Order ignored (combinations)
With repetitions	n^k	$\binom{k+n-1}{k}$
Without repetitions	$P(n,k) = \frac{n!}{(n-k)!}$	$\binom{n}{k}$

Binomial theorem

- Binomial expansion: open parentheses in $(x + y)^n$
- Open the parentheses in $(x + y)^2$
 - $x^2 + 2xy + y^2$
- Open parentheses in $(x + y)^3$

$$- x^{3} + xxy + xyx + yxx + xyy + yxy + yyx + y^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

- That is, a coefficient in front of x²y is the number of ways to pick one y (or 2 x) out of 3 positions.
- Call these coefficients **binomial coefficients**.
- Binomial theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

• Corollary: $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$

Pascal's identity and triangle

- How to compute binomial coefficients?
 - First, note only need to compute them for $0 \le k \le \lfloor \frac{n}{2} \rfloor$, since $\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k!(n-k)!}$
- Pascal's identity: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$ 1 - In practice, use Stirling approximation 1 1 - $n! \sim \sqrt{2\pi n} (n/e)^n$ 1 2 1 - $So \frac{n^k}{k^k} \le \binom{n}{k} < \frac{(en)^k}{k^k}$ 1 3 3 1 - And $\ln n! \sim n \ln n - n$ 1 5 10 10 5 1 1 6 15 20 15 6 1

Pascal's triangle

- There are 52 cards in a standard deck; 4 suites of 13 ranks each.
- In poker, some 5-card combinations ("hands") are special:
 - For example, a "three of a kind" consists of three cards with the same rank, together with two arbitrary cards.
- How many ways are there to choose (ignoring the order)
 - a three of a kind hand?
 - A two pairs hand?
 - Other hands?...

- There are 52 cards in a standard deck; 4 suites of 13 ranks each.
- In poker, some 5-card combinations ("hands") are special:
 - For example, a "three of a kind" consists of three cards with the same rank, together with two cards of other different ranks.
- How many ways are there to choose (ignoring the order)
 - A royal flush?
 - a three of a kind hand?
 - a two pairs hand?
 - other hands?...

- How many ways are there to choose (ignoring the order)
 - a royal flush?
 - C(4,1) = 4
 - a three of a kind?
 - pick the rank: 13=C(13,1)
 - Pick 3 out of 4 kinds of this rank: 4=C(4,3)
 - Pick two other ranks: C(12,2)= 66
 - Pick a suite of each of the other ranks: C(4,1)*C(4,1)=16
 - Total: 13*4*66*16=54912

A ♣			2 *	*		3 ÷	÷		4 *	*	5 * *	*	6 •	• •	7 . ♣	*	8 *	*	9 * *	*	10 * *	l I	₽ :}	K ♠
	*	ŧ		÷	*		* *	ŧε	*	**	*	* * *	•	• • • •	*	** **	•	**************************************	*	* * 6	*** ***			
A ♠			2 ♠	¢	Î	3 •	♠	ĺ	4 ♠	¢	5 •	*	6 •	• •	7 ♠	^	8 ♠ ♠		9 ♠ ♠	¢		ł	•	K.
		ŧ	L	Ý	Ż	_	Ý	€	۴	¢∳	¥	₽\$		• •	•	¢Ľ		¥•*	¥	¢¢	** *			
¢	¥		2 •	۲		3 ♥	•		‡ ♥	•	5 .	•	6 •	•	? •	•	° €							Kara Kara Kara Kara Kara Kara Kara Kara
		Ÿ	2	•	ż	3	•	ŝ	4	\$	• 5 •	6	6			• 7		♠ 8	9	♠ 6				K
ľ	٠	÷	Ŧ	•	•	÷	•	•	÷* •	•1	• •	•				•								

Finite probability

- More common: use the language of probability.
- **Experiments**: producing an **outcome** out of possible choices
 - Tossing a coin: outcome can be "heads"
 - Getting a lottery ticket: outcome can be "win"
- Sample space S: set of all possible outcomes.
 - {heads, tails} for coin toss
 - {1,2,3,4,5,6} x {1,2,3,4,5,6} for rolling two dice
- **Event A** ⊆ *S*: subset of outcomes
 - Both dice came up even.
- **Probability** of an event if all outcomes are **equally likely**:
 - Pr(A) = |A|/|S| (fraction of the outcomes that are in the event A).
 - Probability of both dice coming up even:
 - A={ (2,2),(2,4),(4,2),(2,6),(6,2),(4,4), (4,6), (6,4), (6,6)}. |A| =9, |S|=36
 - P(A)=9/36=1/4
- Can use the same combinatorics we just studied to calculate probabilities (i.e., for finding the size of A).

- What is the probability of getting a three of a kind hand?
 - Size of the sample space: $-C(52, 5) = \binom{52}{5} = 2,598,962$
 - Size of the event A:
 - 54,912
 - Probability of A:

$$- \Pr(A) = \frac{|A|}{|S|} = 0.0211..$$

Probabilities and pink elephants

- What is the probability that walking down George street you'd see a pink elephant?
 - Your friend says: "It is ½! You will either see the pink elephant, or not!"
 - Do you agree?

Probabilities and distributions

- What if outcomes are not equally likely?
 Biased coins, etc.
- A function $Pr: S \to \mathbb{R}$ is a **probability distribution** on (a finite set) S if Pr satisfies the following:
 - For any outcome $s \in S$, $0 \leq Pr(s) \leq 1$
 - $-\Sigma_{\{s\in S\}}\Pr(s)=1$
- Uniform distribution: for all $s \in S$, Pr(s) = 1/|S|
 - all outcomes are equally likely
 - Fair coin: $Pr(heads) = Pr(tails) = \frac{1}{2}$
- Biased coin: say heads twice as likely as tails.
 - Pr(heads) + Pr(tails) = 1. Pr(heads) = 2 * Pr(tails)

$$-\text{ So Pr}(heads) = \frac{2}{3}, \Pr(tails) = \frac{1}{3}$$

Probabilities of events

- Probability of an event A is a sum of probabilities of the outcomes in A:
 Pr(A)=Σ_{a∈A} Pr(a)
- Probability of A not occurring:
 - $\Pr(\bar{A}) = 1 \Pr(A)$

- Probability of the union of two events (either A or B happens) is $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$
 - By principle of inclusion-exclusion
 - If A and B are disjoint, then $Pr(A \cap B) = 0$, so $Pr(A \cup B) = Pr(A) + Pr(B)$
- In general, if events $A_1 \dots A_n$ are pairwise disjoint
 - that is, $\forall i, j \text{ if } i \neq j \text{ then } A_i \cap A_j = \emptyset$
 - Then $\Pr(\bigcup_{i=1}^{n} A_i) = \Pr(A_1 \cup A_2 \cup \cdots \cup A_n) = \sum_{i=1}^{n} \Pr(A_i)$
 - That is, probability of that any of the events happens is the sum of their individual probabilities.

Probabilities of events

 Suppose a die is biased so that 3 appears twice as often as any other number (others equally likely).

- Probability of 3: 2/7. Probabilities of others: 1/7

• What is the probability that an odd number appears?

$$- Pr(A) = \frac{1}{7} + \frac{2}{7} + \frac{1}{7} = \frac{4}{7}$$

• What is a probability that either an odd number or a number divisible by 3 appears?

- A={1,3,5}. B = {3,6}. A \cap B = {3}
- Pr(A) = 4/7. Pr(B) = 3/7. Pr(A \cap B) = 2/7
- Pr(A \cup B) = Pr({1,3,5,6})
=
$$\frac{4}{7} + \frac{3}{7} - \frac{2}{7} = \frac{1}{7} + \frac{2}{7} + \frac{1}{7} + \frac{1}{7} = \frac{5}{7}$$

Birthday paradox

 How many people have to be in the room so that probability that two of them have the same birthday is at least ½?

Birthday paradox

- How many people have to be in the room so that probability that two of them have the same birthday is at least ½?
 - Considering all birthdays independent: no twins!
 - And considering all days equally likely
 - Otherwise probability would be higher.
 - Even counting leap years: 366 days.
- Product rule: number of combinations of distinct birthdays of the first *i* people is P(*i*, 366) = 366*365*...*(366-i+1)
 - Probability that the first *i* people all have different birthday is $\frac{P(i,366)}{366^{i}} = \frac{365}{366} \frac{364}{366} \dots \frac{(366-i+1)}{366}$
 - So with probability $1 \frac{P(i,366)}{366^{i}}$ at least two out of first *i* people have birthday on the same day.
 - That comes up to about i = 23 people to reach $\frac{1}{2}$.

Puzzle: Monty Hall problem

- Let's make a deal!
 - A player picks a door.
 - Behind one door is a car.
 - Behind two others are goats.
- A player chooses a door.
 - A host opens another door
 - Shows a goat behind it.
 - And asks the player if she wants to change her choice.
- Should she switch?

