COMP 1002

Logic for Computer Scientists

Lecture 25

:[s[2].

i
Ei-;i_

Puzzle

* Do the following two English sentences have
the same parse trees?

— Time flies like an arrow. -

-

— Fruit flies like an apple.

Recursive definitions of sets

Basis: initial elements in the set
a) Empty stringisinS.
b) Empty string, 0 and 1 areinS.

Recursive step: a rule to make new elements in the set
out of existing onesin S

a) ifwes, thenwO€S andwl €S
b) Ifw; € Sandw, € §,thenw;w, €S
Restriction: and nothing else is in S.
— Nothing else is a binary string.

Both examples define a set of all binary strings {0,1}*
— Recursive step b) only works with basis b).
— Recursive step a) works with both basis a) and basis b).

Structural induction

e LetS € U be arecursively defined set, and
F(x) is a property (of x € U).
* Then

— if all x in the base of S have the property,

— and applying the recursion rules preserves the
property,
— then all elements in S have the property.

Multiples of 3

e Let’s define a set S of numbers as follows.
— Base: 3 €S
— Recursion:if x,y €S, thenx+y €S

e Claim: all numbers in S are divisible by 3
— Thatis,Vx € S3z € Nx = 3z.

* Proof (by structural induction).
— Base case: 3 is divisible by 3 (z=1).
— Recursive step:
e Lletx,y € S.Then3z,u € Nx = 3z Ay = 3u. (inductive hypothesis)

* Thenx +y =3z+ 3u = 3(z+ u). (induction step)
* Therefore, x + y is divisible by 3.

— As there are no other elements in S except for those constructed from
3 by the recursion rule, all elements in S are divisible by 3.

Trees o

* In computer science, a tree is an undirected eA@
graph without cycles Undirected cycle

— Undirected: all edges go both ways, no arrows."" "¢

— Cycle: sequence of edges going back to the same
point.

e Recursive definition of trees:

— Base: A single vertex @ is a tree.

— Recursion:
 Let T be a tree, and v a new vertex.

 Then a new tree consist of T, v, and an edge (connection)
between some vertex of T and v.

— Restriction:

* Anything that cannot be constructed with this rule from
this base is not a tree.

% Binary trees

* Rooted trees are trees with a special vertex
designated as a root.
— Rooted trees are binary if every vertex has at most three
edges: one going towards the root, and two going away

from the root. Full if every vertex has either 2 or 0 edges
going away from the root.

* Recursive definition of full binary trees:

— Base: Asingle vertex @) is a full binary tree with that
vertex as a root.
— Recursion:

* Let Ty, T, be full binary trees with roots ry, 75, respectively.
Let v be a new vertex.

* A new full binary tree with root v is formed by connecting 1y
and r, to v.

— Restriction:

* Anything that cannot be constructed with this rule from this
base is not a full binary tree.

Y

4

pucehe

% Height of a full binary tree

* The height of a rooted tree, h(T), is the maximum
number of edges to get from any vertex to the root.

— Height of a tree with a single vertex is 0.

* Claim: Letn(T) be the number of vertices in a full
binary tree T. Then n(T) < 2h(M+1 _q

* Alternatively, height of a binary tree is at least Height 2
log, n(T)

— If you have a recursive program that calls itself twice (e.g,
within if ... then ... else ...)

— Then if this code executes n times (maybe on n different
cases)

— Then the program runs in time at least log, 1, even
when cases are checked in parallel.

% Height of a full binary tree

e Claim: Letn T% be the number of vertices in a full binary tree T.
Then n(T) < 2"M*1 _ 1 where h(T) is the height of T.

* Proof (by structural induction)

— Base case: a tree with a single vertex hasn(T) = 1 and h(T) = 0.
¢ So2MM+1 _1-1>1
— Recursion: Suppose T was built by attaching Ty, T, to a new root
vertex v.
* Number of verticesin T is n(T) = n(Ty) + n(T,) + 1
* Everyvertexin T; or T, now has one extra step to get to the new rootin T.
— So h(T) = 1+ max(h(T;), h(T,))
« By the induction hypothesis, n(T;) < 2MT)*1 _ 1 and n(T,) < 2T+ _ 1
e n(T) =n(Ty) +n(T,) +1
< 1+ (2MT+1_1)4(2h(T2)+1 _ 1))
<2. maX(zh(T1)+1’ Zh(T2)+1) -1
<2. Zmax(h(T1),h(T2))+1 -1
— . Zh(T) —1= 2h(T)+1 -1

— Therefore, the number of vertices of any binary tree T is < 2h(M+1 _q

W s

TP ¥

L Function growth.

 What does it mean to “grow” at a certain speed?
How to compare growth rate of two functions?
— Is f(n)=100n larger than g(n) = n??
* For small n, yes. For n > 100, not so much...

— As usually program take longer on larger inputs,
performance on larger inputs matters more.

— Constant factors don’t matter that much.

e So to compare two functions, check which becomes
larger as n increases (to infinity).

— Ignoring constant factors, as they don’t contribute to
the rate of growth.

= Function growth.

* How to estimate the rate of growth?
— Plotting a graph?

f! 3
N
3
2
D
1
A o c
4 3 2 Q%/ 555555
-
2
i E
-4
flx)=x-3x-1
5

* Not quite conclusive:

— How do you know what they will do past the
graphed part?

N\ 7
0

L W

X

— O-notation.

We say that f(n) grows at most as fast as g(n) if
— There is a value n, such that after n,, f(n) is always at most as large as g(n)
* More precisely, compare absolute values: |g(n)]| vs. |f(n)]

— Moreover, ignore constant factors:
* So if two functions only differ by a constant factor, consider them having the same growth rate.

» Denote set of all functions growing at most as fast as g(n) by O(g(n))
— Big-Oh of g(n).
— g(n) is an asymptotic upper bound for f(n).

— When both f(n) € O(g(n)) and g(n) € O(f(n)), write f(n) € 0(g(n))
* f(n) is in big-Theta of g(n)).

* More generally, for real-valued functions f(x) and g(x),

f(x) € O(g(x)) iff

Jxo ERZ°IceER™ Vx> x, |[f(X)| < c-|glx)]

* Thatis, from some point x, on, each |f(x)| islessthan |g(x)| (up to a constant
factor).

« Usually in time complexity have functions N —» R=°

,so use n for x and ignore | |.

4096
2048
1024
512
256
128
64
32

—_— T = w O

\‘"‘\ V.

LR
fA0YL

O-notation.

f(n) e O(g(n)) iff

Any, €ENIce R vn=ny f(n) <c-gn)

« f(n) =n? gn) = 2™
— Take c=1, ny = 4.
— Foreveryn = ny, f(n) < g(n)
* Proof by induction.
— Son? € 0(2")

« f(n) =n% g(n) = 10n.
— Take arbitrary ¢ and look at n? < ¢ - 10n.
— No matter what c is, whenn > ¢ - 10, n®> >c - 10n

— Son? ¢ 0(10n).

« f(n) =n?+100n, g(n) = 10n2.

! — Here, f(n) € O(g(n)) and also g(n) € 0(f(n))

| | * Sof(n) € 6(g(n))

: : * ! ; « f(n)e O(g(n)): ¢ =20 and/or ny = 100 work.
You will see some O-notation * g€ O(f(m)): Take c=10,ny = 1. _
in COMP 1000 and a lot in — Canignore not only constants, but also all except the leading

COMP 2002.

term in the expression.

Tower of Hanoi game

e Rules of the game:
— Start with all disks on the first peg.

— At any step, can move a disk to another peg, as long as it is
not placed on top of a smaller disk.

— Goal: move the whole tower onto the second peg.

 Question: how many steps are needed to move the
tower of 8 disks? How about n disks?

Tower of Hanoi game
-

* Rules of the game:
— Start with all disks on the first peg.
— At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.
— Goal: move the whole tower onto the second peg.

* Question: how many steps are needed to move the tower of 8 disks? How about n disks?

* Let us call the number of moves needed to transfer n disks H(n).
— Names of pegs do not matter: from any peg i to any pegj # i would take the same number of

steps.
e Basis: only one disk can be transferred in one step.
— SoH(1)=1

* Recursive step:
— suppose we have n-1 disks. To transfer them all to peg 2, need H(n — 1) number of steps.
— To transfer the remaining disk to peg 3, 1 step.
— To transfer n-1 disks from peg 2 to peg 3 need H(n-1) steps again.
— So H(n)=2H(n-1)+1 (recurrence).

* Closed form: H(n)=2" — 1.

Recurrence relations

 Recurrence: an equation that defines an nt" element
in a sequence in terms of one or more of previous
terms.
* Think of F(n) = s, for some sequence {s,}
—Hn) = 2Hn—-1)+1
—F(n) = Fn—1)+FMn-2)

 Aclosed form of a recurrence relation is an expression
that defines an n"* element in a sequence in terms of
n directly.

— Often use recurrence relations and their closed forms to
describe performance of (especially recursive) algorithms.

F oy
Closed forms of some sequences

e Arithmetic progression:
— Sequence: ¢,c+d,c+2d,c+ 3d,...,c +nd, ...

— Closed form: s,,=c + nd
* Closed forms are very useful for analysis of recursive programs, etc.

* Geometric progression:
— Sequence: ¢, cr,cr?,cr3, ... cr™, ...

— Closed form: s, =c-r"

* Fibonacci sequence: F(n)=F(n-1)+F(n-2) /\

— Sequence: 1,1,2,3,5,8,13, ... / L, a b
— Closed form: E, = ‘pn‘E/15‘¢)n ath

[(4 “JJy * o =) . b
* Where @ (“phi”)is the “golden ratio”: a ratio such that % = %

1++/5
¢ =—

&.8.d

T ———

Solving recurrences

* Solving a recurrence: finding a closed form.
— Solving the recurrence H(n)=2H(n-1)+1
« Hin)=2-Hn-1)+1
=2QHn-2)+1)+1=22Hn-2)+2+1
=2Hmn-3)+22+2+1
=2*Hmn—-4)+23+22+2+1..

— Closed form: H(n) = 24 2t =2" —1
* Proof by induction (coming in the next lecture).
* Or by noticing that a binary number 111...1 plus 1 gives a binary number 10000...0

— So adding one more disk doubles the number of steps.
* We say that the function defined by H(n) grows exponentially

e Solving recurrences in general might be tricky.

— When the recurrence is of the form T(n)=a T(n/b)+f(n), there is a general
method to estimate the growth rate of a function defined by the recurrence
* Called the Master Theorem for recurrences.

. Puzzle: chocolate squares.

e Suppose you have a piece of chocolate like this:

* How many squares are in it?
— of all sizes, from single to the whole thing

