
Lecture 25

COMP 1002

Logic for Computer Scientists

B J25

Puzzle

• Do the following two English sentences have
the same parse trees?

– Time flies like an arrow.

– Fruit flies like an apple.

Recursive definitions of sets

• Basis: initial elements in the set
a) Empty string is in S.
b) Empty string, 0 and 1 are in S.

• Recursive step: a rule to make new elements in the set
out of existing ones in S
a) if 𝑤 ∈ 𝑆, then 𝑤0 ∈ 𝑆 and 𝑤1 ∈ 𝑆
b) If 𝑤1 ∈ S and 𝑤2 ∈ 𝑆, then 𝑤1𝑤2 ∈ 𝑆

• Restriction: and nothing else is in S.
– Nothing else is a binary string.

• Both examples define a set of all binary strings 0,1 ∗

– Recursive step b) only works with basis b).
– Recursive step a) works with both basis a) and basis b).

Structural induction

• Let 𝑆 ⊆ 𝑈 be a recursively defined set, and
F(x) is a property (of 𝑥 ∈ 𝑈).

• Then

– if all 𝑥 in the base of S have the property,

– and applying the recursion rules preserves the
property,

– then all elements in S have the property.

Multiples of 3

• Let’s define a set S of numbers as follows.
– Base: 3 ∈ 𝑆
– Recursion: if 𝑥, 𝑦 ∈ 𝑆, then 𝑥 + 𝑦 ∈ 𝑆

• Claim: all numbers in S are divisible by 3
– That is, ∀𝑥 ∈ 𝑆 ∃ 𝑧 ∈ ℕ 𝑥 = 3𝑧.

• Proof (by structural induction).
– Base case: 3 is divisible by 3 (z=1).
– Recursive step:

• Let 𝑥, 𝑦 ∈ 𝑆. Then ∃𝑧, 𝑢 ∈ ℕ 𝑥 = 3𝑧 ∧ 𝑦 = 3𝑢. (inductive hypothesis)
• Then 𝑥 + 𝑦 = 3𝑧 + 3𝑢 = 3 𝑧 + 𝑢 . (induction step)
• Therefore, 𝑥 + 𝑦 is divisible by 3.

– As there are no other elements in S except for those constructed from
3 by the recursion rule, all elements in S are divisible by 3.

Trees

• In computer science, a tree is an undirected
graph without cycles
– Undirected: all edges go both ways, no arrows.
– Cycle: sequence of edges going back to the same

point.

• Recursive definition of trees:
– Base: A single vertex is a tree.
– Recursion:

• Let 𝑇 be a tree, and 𝑣 a new vertex.
• Then a new tree consist of 𝑇, 𝑣, and an edge (connection)

between some vertex of 𝑇 and 𝑣.

– Restriction:
• Anything that cannot be constructed with this rule from

this base is not a tree.

1

2

3

Undirected cycle
(not a tree)

𝑣

𝑣1

𝑣2 𝑣3

𝑣4

𝑣5

Binary trees
• Rooted trees are trees with a special vertex

designated as a root.
– Rooted trees are binary if every vertex has at most three

edges: one going towards the root, and two going away
from the root. Full if every vertex has either 2 or 0 edges
going away from the root.

• Recursive definition of full binary trees:
– Base: A single vertex is a full binary tree with that

vertex as a root.
– Recursion:

• Let 𝑇1, 𝑇2 be full binary trees with roots 𝑟1, 𝑟2, respectively.
Let 𝑣 be a new vertex.

• A new full binary tree with root 𝑣 is formed by connecting 𝑟1
and 𝑟2 to 𝑣.

– Restriction:
• Anything that cannot be constructed with this rule from this

base is not a full binary tree.

𝑣

𝑣1

𝑣2 𝑣3

𝑣4 𝑣5

Height of a full binary tree

• The height of a rooted tree, ℎ 𝑇 , is the maximum
number of edges to get from any vertex to the root.
– Height of a tree with a single vertex is 0.

• Claim: Let 𝑛(𝑇) be the number of vertices in a full
binary tree T. Then 𝑛 𝑇 ≤ 2ℎ 𝑇 +1 − 1

• Alternatively, height of a binary tree is at least
log2 𝑛(𝑇)
– If you have a recursive program that calls itself twice (e.g,

within if … then … else …)
– Then if this code executes n times (maybe on n different

cases)
– Then the program runs in time at least log2 𝑛 , even

when cases are checked in parallel.

𝑣1

𝑣2 𝑣3

𝑣4 𝑣5

Height 2

Height of a full binary tree

• Claim: Let 𝑛(𝑇) be the number of vertices in a full binary tree T.
Then 𝑛 𝑇 ≤ 2ℎ 𝑇 +1 − 1, where ℎ 𝑇 is the height of T.

• Proof (by structural induction)
– Base case: a tree with a single vertex has 𝑛 𝑇 = 1 and ℎ 𝑇 = 0.

• So 2ℎ 𝑇 +1 − 1 = 1 ≥ 1

– Recursion: Suppose 𝑇 was built by attaching 𝑇1, 𝑇2 to a new root
vertex 𝑣.
• Number of vertices in 𝑇 is n T = 𝑛 𝑇1 + 𝑛 𝑇2 + 1
• Every vertex in 𝑇1 or 𝑇2 now has one extra step to get to the new root in 𝑇.

– So ℎ 𝑇 = 1 + max(ℎ 𝑇1 , ℎ 𝑇2)

• By the induction hypothesis, 𝑛 𝑇1 ≤ 2ℎ 𝑇1 +1 − 1 and 𝑛 𝑇2 ≤ 2ℎ 𝑇2 +1 − 1
• n T = 𝑛 𝑇1 + 𝑛 𝑇2 + 1

≤ 1 + (2ℎ 𝑇1 +1−1)+(2ℎ 𝑇2 +1 − 1)

≤ 2 ⋅ max(2ℎ 𝑇1 +1, 2ℎ 𝑇2 +1) − 1

≤ 2 ⋅ 2max ℎ 𝑇1 ,ℎ 𝑇2 +1 − 1

= 2 ⋅ 2ℎ 𝑇 − 1 = 2ℎ 𝑇 +1 − 1

– Therefore, the number of vertices of any binary tree 𝑇 is ≤ 2ℎ 𝑇 +1 −1

𝑣1

𝑣2 𝑣3

𝑣4 𝑣5

Function growth.

• What does it mean to “grow” at a certain speed?
How to compare growth rate of two functions?
– Is f(n)=100n larger than 𝑔 𝑛 = 𝑛2?

• For small n, yes. For n > 100, not so much…

– As usually program take longer on larger inputs,
performance on larger inputs matters more.

– Constant factors don’t matter that much.

• So to compare two functions, check which becomes
larger as n increases (to infinity).
– Ignoring constant factors, as they don’t contribute to

the rate of growth.

Function growth.

• How to estimate the rate of growth?
– Plotting a graph?

• Not quite conclusive:
– How do you know what they will do past the

graphed part?

• We say that f(n) grows at most as fast as g(n) if
– There is a value 𝑛0 such that after 𝑛0, f 𝑛 is always at most as large as g 𝑛

• More precisely, compare absolute values: |g(n)| vs. |f(n)|

– Moreover, ignore constant factors:
• So if two functions only differ by a constant factor, consider them having the same growth rate.

• Denote set of all functions growing at most as fast as 𝑔 𝑛 by 𝑶 𝒈 𝒏
– Big-Oh of g(n).
– g(n) is an asymptotic upper bound for f(n).

– When both 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑂 𝑓 𝑛 , write 𝑓 𝑛 ∈ Θ(𝑔 𝑛)
• f(n) is in big-Theta of g(n)).

• More generally, for real-valued functions f(x) and g(x),

• That is, from some point 𝑥0 on, each |𝑓 𝑥 | is less than |g(x)| (up to a constant
factor).

• Usually in time complexity have functions ℕ → ℝ≥0, so use 𝑛 for 𝑥 and ignore | |.

𝑓 𝑥 ∈ 𝑂 𝑔 𝑥 iff

∃ 𝑥0 ∈ ℝ≥0 ∃𝑐 ∈ ℝ>0 ∀𝑥 ≥ 𝑥0 𝑓 𝑥 ≤ 𝑐 ⋅ 𝑔 𝑥

O-notation.

O-notation.

• 𝑓 𝑛 = 𝑛2, 𝑔 𝑛 = 2𝑛.
– Take c=1, 𝑛0 = 4.
– For every 𝑛 ≥ 𝑛0, 𝑓 𝑛 ≤ 𝑔 𝑛

• Proof by induction.

– So n2 ∈ 𝑂 2𝑛

• 𝑓 𝑛 = 𝑛2, 𝑔 𝑛 = 10𝑛.
– Take arbitrary 𝑐 and look at 𝑛2 ≤ 𝑐 ⋅ 10𝑛.
– No matter what 𝑐 is, when 𝑛 > 𝑐 ⋅ 10, 𝑛2 ≥ 𝑐 ⋅ 10𝑛
– So 𝑛2 ∉ 𝑂 10𝑛 .

• 𝑓 𝑛 = 𝑛2 + 100𝑛, 𝑔 𝑛 = 10𝑛2.
– Here, 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and also 𝑔 𝑛 ∈ 𝑂(𝑓 𝑛)

• So 𝑓 𝑛 ∈ Θ(𝑔 𝑛)

• 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 : c = 20 and/or 𝑛0 = 100 work.

• 𝑔 𝑛 ∈ 𝑂 𝑓 𝑛 : Take c=10, 𝑛0 = 1.

– Can ignore not only constants, but also all except the leading
term in the expression.

𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 iff

∃ 𝑛0 ∈ ℕ ∃𝑐 ∈ ℝ>0 ∀𝑛 ≥ 𝑛0 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

You will see some O-notation
in COMP 1000 and a lot in
COMP 2002.

Tower of Hanoi game

• Rules of the game:
– Start with all disks on the first peg.
– At any step, can move a disk to another peg, as long as it is

not placed on top of a smaller disk.
– Goal: move the whole tower onto the second peg.

• Question: how many steps are needed to move the
tower of 8 disks? How about n disks?

Tower of Hanoi game

• Rules of the game:
– Start with all disks on the first peg.
– At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.
– Goal: move the whole tower onto the second peg.

• Question: how many steps are needed to move the tower of 8 disks? How about n disks?

• Let us call the number of moves needed to transfer n disks H(n).
– Names of pegs do not matter: from any peg 𝑖 to any peg 𝑗 ≠ 𝑖 would take the same number of

steps.

• Basis: only one disk can be transferred in one step.
– So H(1) = 1

• Recursive step:
– suppose we have n-1 disks. To transfer them all to peg 2, need 𝐻(𝑛 − 1) number of steps.
– To transfer the remaining disk to peg 3, 1 step.
– To transfer n-1 disks from peg 2 to peg 3 need H(n-1) steps again.
– So H(n) = 2H(n-1)+1 (recurrence).

• Closed form: H(n) = 2𝑛 − 1.

Recurrence relations

• Recurrence: an equation that defines an 𝑛𝑡ℎ element
in a sequence in terms of one or more of previous
terms.

• Think of 𝐹 𝑛 = 𝑠𝑛 for some sequence {𝑠𝑛}

– 𝐻(𝑛) = 2𝐻(𝑛 − 1) + 1

– 𝐹(𝑛) = 𝐹(𝑛 − 1) + 𝐹(𝑛 − 2)

• A closed form of a recurrence relation is an expression
that defines an 𝑛𝑡ℎ element in a sequence in terms of
𝑛 directly.
– Often use recurrence relations and their closed forms to

describe performance of (especially recursive) algorithms.

Closed forms of some sequences

• Arithmetic progression:
– Sequence: 𝑐, 𝑐 + 𝑑, 𝑐 + 2𝑑, 𝑐 + 3𝑑, … , 𝑐 + 𝑛𝑑, …
– Closed form: 𝑠𝑛 = 𝑐 + 𝑛𝑑

• Closed forms are very useful for analysis of recursive programs, etc.

• Geometric progression:
– Sequence: 𝑐, 𝑐𝑟, 𝑐𝑟2, 𝑐𝑟3, … , 𝑐𝑟𝑛, …
– Closed form: 𝑠𝑛 = 𝑐 ⋅ 𝑟𝑛

• Fibonacci sequence: F(n)=F(n-1)+F(n-2)
– Sequence: 1,1,2,3,5,8,13, …

– Closed form: 𝐹𝑛 = 𝜑𝑛− 1−𝜑 𝑛

√5

• Where 𝜑 (“phi”) is the “golden ratio”: a ratio such that
𝑎+𝑏

𝑎
=

𝑎

𝑏

• 𝜑 =
1+ 5

2

• Solving a recurrence: finding a closed form.
– Solving the recurrence H(n)=2H(n-1)+1

• H(n) = 2 ⋅ 𝐻 𝑛 − 1 + 1

= 2 2𝐻 𝑛 − 2 + 1 + 1 = 22𝐻 𝑛 − 2 + 2 + 1

= 23𝐻 𝑛 − 3 + 22 + 2 + 1
= 24 𝐻 𝑛 − 4 + 23 + 22 + 2 + 1 …

– Closed form: 𝐻 𝑛 = Σ𝑖=0
𝑛−1 2𝑖 = 2𝑛 − 1

• Proof by induction (coming in the next lecture).
• Or by noticing that a binary number 111...1 plus 1 gives a binary number 10000…0

– So adding one more disk doubles the number of steps.
• We say that the function defined by H(n) grows exponentially

• Solving recurrences in general might be tricky.
– When the recurrence is of the form T(n)=a T(n/b)+f(n), there is a general

method to estimate the growth rate of a function defined by the recurrence
• Called the Master Theorem for recurrences.

Solving recurrences

Puzzle: chocolate squares

• Suppose you have a piece of chocolate like this:

• How many squares are in it?
– of all sizes, from single to the whole thing

