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Puzzle

• Do the following two English sentences have 
the same parse trees? 

– Time flies like an arrow. 

– Fruit flies like an apple. 



Recursive definitions of sets 

• Basis:  initial elements in the set
a) Empty string is in S. 
b) Empty string, 0 and 1 are in S. 

• Recursive step: a rule to make new elements in the set
out of existing ones in S 
a) if 𝑤 ∈ 𝑆, then 𝑤0 ∈ 𝑆 and 𝑤1 ∈ 𝑆
b) If 𝑤1 ∈ S and 𝑤2 ∈ 𝑆, then 𝑤1𝑤2 ∈ 𝑆

• Restriction: and nothing else is in S. 
– Nothing else is a binary string. 

• Both examples define a set of all binary strings 0,1 ∗

– Recursive step b) only works with  basis b).  
– Recursive step a) works with both basis a) and basis b).



Structural induction

• Let 𝑆 ⊆ 𝑈 be a recursively defined set, and 
F(x) is a property (of 𝑥 ∈ 𝑈).

• Then 

– if all 𝑥 in the base of S have the property,  

– and applying the recursion rules preserves the 
property,

– then all elements in S have the property. 



Multiples of 3

• Let’s define a set S of numbers as follows. 
– Base:  3 ∈ 𝑆
– Recursion: if  𝑥, 𝑦 ∈ 𝑆, then 𝑥 + 𝑦 ∈ 𝑆

• Claim: all numbers in S are divisible by 3 
– That is, ∀𝑥 ∈ 𝑆 ∃ 𝑧 ∈ ℕ 𝑥 = 3𝑧.

• Proof (by structural induction). 
– Base case:  3 is divisible by 3 (z=1). 
– Recursive step:

• Let 𝑥, 𝑦 ∈ 𝑆. Then ∃𝑧, 𝑢 ∈ ℕ 𝑥 = 3𝑧 ∧ 𝑦 = 3𝑢. (inductive hypothesis)
• Then 𝑥 + 𝑦 = 3𝑧 + 3𝑢 = 3 𝑧 + 𝑢 . (induction step) 
• Therefore, 𝑥 + 𝑦 is divisible by 3. 

– As there are no other elements in S except for those constructed from 
3 by the recursion rule, all elements in S are divisible by 3.   



Trees 

• In computer science, a tree is an undirected 
graph without cycles 
– Undirected: all edges go both ways, no arrows. 
– Cycle: sequence of edges going back to the same 

point. 

• Recursive definition of trees: 
– Base: A single vertex         is a tree.
– Recursion:  

• Let 𝑇 be a tree, and 𝑣 a new vertex. 
• Then a new tree consist of 𝑇, 𝑣, and an edge (connection) 

between some vertex of 𝑇 and 𝑣.

– Restriction: 
• Anything that cannot be constructed with this rule  from 

this base is not a tree. 
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Binary  trees 
• Rooted trees are trees with a special vertex 

designated as a root.  
– Rooted trees are binary if every vertex has at most three 

edges: one going towards the root, and two going away 
from the root. Full if every vertex has either 2 or 0 edges 
going away from the root. 

• Recursive definition of full binary trees: 
– Base: A single vertex         is a full binary tree with that 

vertex as a root.
– Recursion:  

• Let 𝑇1, 𝑇2 be full binary trees with roots 𝑟1, 𝑟2, respectively.  
Let 𝑣 be a  new vertex. 

• A new full binary tree with root 𝑣 is formed by connecting 𝑟1
and 𝑟2 to 𝑣.

– Restriction: 
• Anything that cannot be constructed with this rule  from this 

base is not a full binary tree. 
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Height of a full binary tree

• The height of a rooted tree, ℎ 𝑇 , is the maximum 
number of edges to get from any vertex to the root.  
– Height of a tree with a single vertex is 0. 

• Claim:  Let 𝑛(𝑇) be the number of vertices in a full 
binary tree T.  Then 𝑛 𝑇 ≤ 2ℎ 𝑇 +1 − 1

• Alternatively,  height of a binary tree is at least 
log2 𝑛(𝑇)
– If you have a recursive program that calls itself twice (e.g, 

within if … then … else …)
– Then if this code executes n times (maybe on n different 

cases) 
– Then the program runs in time at least log2 𝑛 , even 

when cases are checked in parallel. 
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Height of a full binary tree

• Claim:  Let 𝑛(𝑇) be the number of vertices in a full binary tree T.  
Then 𝑛 𝑇 ≤ 2ℎ 𝑇 +1 − 1, where ℎ 𝑇 is the height of T.

• Proof (by structural induction) 
– Base case:  a tree with a single vertex has 𝑛 𝑇 = 1 and ℎ 𝑇 = 0.

• So 2ℎ 𝑇 +1 − 1 = 1 ≥ 1

– Recursion:  Suppose  𝑇 was built by attaching 𝑇1, 𝑇2 to a new root 
vertex 𝑣.
• Number of vertices in 𝑇 is n T = 𝑛 𝑇1 + 𝑛 𝑇2 + 1
• Every vertex in 𝑇1 or 𝑇2 now has one extra step to get to the new root in 𝑇.

– So ℎ 𝑇 = 1 + max(ℎ 𝑇1 , ℎ 𝑇2 )

• By the induction hypothesis, 𝑛 𝑇1 ≤ 2ℎ 𝑇1 +1 − 1 and 𝑛 𝑇2 ≤ 2ℎ 𝑇2 +1 − 1
• n T = 𝑛 𝑇1 + 𝑛 𝑇2 + 1

≤ 1 + (2ℎ 𝑇1 +1−1)+(2ℎ 𝑇2 +1 − 1 )

≤ 2 ⋅ max(2ℎ 𝑇1 +1, 2ℎ 𝑇2 +1) − 1

≤ 2 ⋅ 2max ℎ 𝑇1 ,ℎ 𝑇2 +1 − 1

= 2 ⋅ 2ℎ 𝑇 − 1 = 2ℎ 𝑇 +1 − 1

– Therefore, the number of vertices of any binary tree 𝑇 is ≤ 2ℎ 𝑇 +1 −1
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Function growth. 

• What does it mean to “grow” at a certain speed? 
How to compare growth rate of two functions?
– Is f(n)=100n larger than 𝑔 𝑛 = 𝑛2?

• For small n, yes. For n > 100, not so much… 

– As usually program take longer on larger inputs, 
performance on larger inputs matters more.  

– Constant factors don’t matter that much. 

• So to compare two functions, check which becomes 
larger as n increases (to infinity). 
– Ignoring constant factors, as they don’t contribute to 

the rate of growth. 



Function growth. 

• How to estimate the rate of growth? 
– Plotting a graph? 

• Not quite conclusive:
– How do you know what they will do past the 

graphed part?  



• We say that f(n) grows at most as fast as g(n) if
– There is a value 𝑛0 such that after 𝑛0,  f 𝑛 is always at most as large as g 𝑛

• More precisely, compare absolute values: |g(n)| vs. |f(n)|

– Moreover, ignore constant factors: 
• So if two functions only differ by a constant factor, consider them having the same growth rate.

• Denote set of all functions growing at most as fast as 𝑔 𝑛 by 𝑶 𝒈 𝒏
– Big-Oh of g(n).  
– g(n) is an asymptotic upper bound for f(n). 

– When both 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑂 𝑓 𝑛 , write 𝑓 𝑛 ∈ Θ(𝑔 𝑛 )
• f(n) is in big-Theta of g(n)).  

• More generally, for real-valued functions f(x) and g(x),  

• That is,  from some point 𝑥0 on, each  |𝑓 𝑥 | is less than |g(x)| (up to a constant 
factor). 

• Usually in time complexity have functions  ℕ → ℝ≥0, so use 𝑛 for 𝑥 and ignore | |. 

𝑓 𝑥 ∈ 𝑂 𝑔 𝑥 iff

∃ 𝑥0 ∈ ℝ≥0 ∃𝑐 ∈ ℝ>0 ∀𝑥 ≥ 𝑥0 𝑓 𝑥 ≤ 𝑐 ⋅ 𝑔 𝑥

O-notation. 



O-notation. 

• 𝑓 𝑛 = 𝑛2, 𝑔 𝑛 = 2𝑛.
– Take c=1, 𝑛0 = 4. 
– For every 𝑛 ≥ 𝑛0, 𝑓 𝑛 ≤ 𝑔 𝑛

• Proof by induction. 

– So n2 ∈ 𝑂 2𝑛

• 𝑓 𝑛 = 𝑛2, 𝑔 𝑛 = 10𝑛.
– Take arbitrary 𝑐 and  look at 𝑛2 ≤ 𝑐 ⋅ 10𝑛. 
– No matter what 𝑐 is, when 𝑛 > 𝑐 ⋅ 10, 𝑛2 ≥ 𝑐 ⋅ 10𝑛
– So 𝑛2 ∉ 𝑂 10𝑛 .

• 𝑓 𝑛 = 𝑛2 + 100𝑛, 𝑔 𝑛 = 10𝑛2.
– Here, 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and also 𝑔 𝑛 ∈ 𝑂(𝑓 𝑛 )

• So 𝑓 𝑛 ∈ Θ(𝑔 𝑛 )

• 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 :   c = 20 and/or 𝑛0 = 100 work. 

• 𝑔 𝑛 ∈ 𝑂 𝑓 𝑛 : Take c=10, 𝑛0 = 1. 

– Can ignore not only constants, but also all except the leading 
term in the expression. 

𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 iff

∃ 𝑛0 ∈ ℕ ∃𝑐 ∈ ℝ>0 ∀𝑛 ≥ 𝑛0 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)

You will see some O-notation 
in COMP 1000 and a lot in 
COMP 2002.



Tower of Hanoi game

• Rules of the game: 
– Start with all disks on the first peg. 
– At any step, can move a disk to another peg, as long as it is 

not placed on top of a smaller disk. 
– Goal:  move the whole tower onto the second peg. 

• Question:  how many steps are needed to move the 
tower of 8 disks? How about n disks?   



Tower of Hanoi game

• Rules of the game: 
– Start with all disks on the first peg. 
– At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk. 
– Goal:  move the whole tower onto the second peg. 

• Question:  how many steps are needed to move the tower of 8 disks? How about n disks?   

• Let us call the number of moves needed to transfer n disks H(n). 
– Names of pegs do not matter:  from any peg 𝑖 to any peg 𝑗 ≠ 𝑖 would take the same number of 

steps.

• Basis:  only one disk can be transferred in one step. 
– So H(1) = 1 

• Recursive step:  
– suppose we have n-1 disks.  To transfer them all to peg 2, need 𝐻(𝑛 − 1) number of steps.  
– To transfer the remaining disk to peg 3, 1 step. 
– To transfer n-1 disks from peg 2 to peg 3 need  H(n-1) steps again. 
– So  H(n) = 2H(n-1)+1   (recurrence). 

• Closed form:  H(n) = 2𝑛 − 1.



Recurrence relations

• Recurrence:  an equation that defines an 𝑛𝑡ℎ element 
in a sequence in terms of one or more of previous 
terms. 

• Think of 𝐹 𝑛 = 𝑠𝑛 for some sequence {𝑠𝑛}

– 𝐻(𝑛) = 2𝐻(𝑛 − 1) + 1

– 𝐹(𝑛) = 𝐹(𝑛 − 1) + 𝐹(𝑛 − 2)

• A closed form of a recurrence relation is an expression 
that defines an 𝑛𝑡ℎ element in a sequence in terms of 
𝑛 directly. 
– Often use recurrence relations and their closed forms to 

describe performance of (especially recursive) algorithms.



Closed forms of some sequences

• Arithmetic progression: 
– Sequence:  𝑐, 𝑐 + 𝑑, 𝑐 + 2𝑑, 𝑐 + 3𝑑, … , 𝑐 + 𝑛𝑑, …
– Closed form:  𝑠𝑛 = 𝑐 + 𝑛𝑑

• Closed forms are very useful for analysis of recursive programs, etc.

• Geometric progression: 
– Sequence:  𝑐, 𝑐𝑟, 𝑐𝑟2, 𝑐𝑟3, … , 𝑐𝑟𝑛, …
– Closed form: 𝑠𝑛 = 𝑐 ⋅ 𝑟𝑛

• Fibonacci sequence: F(n)=F(n-1)+F(n-2)
– Sequence: 1,1,2,3,5,8,13, …

– Closed form: 𝐹𝑛 = 𝜑𝑛− 1−𝜑 𝑛

√5

• Where 𝜑 (“phi”) is the “golden ratio”:  a ratio such that   
𝑎+𝑏

𝑎
=

𝑎

𝑏
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• Solving a recurrence: finding a closed form. 
– Solving  the recurrence H(n)=2H(n-1)+1 

• H(n)  = 2 ⋅ 𝐻 𝑛 − 1 + 1

= 2 2𝐻 𝑛 − 2 + 1 + 1 = 22𝐻 𝑛 − 2 + 2 + 1

= 23𝐻 𝑛 − 3 + 22 + 2 + 1
= 24 𝐻 𝑛 − 4 + 23 + 22 + 2 + 1 …

– Closed form:  𝐻 𝑛 = Σ𝑖=0
𝑛−1 2𝑖 = 2𝑛 − 1

• Proof by induction (coming in the next lecture). 
• Or by noticing that a binary number 111...1 plus 1 gives a binary number 10000…0  

– So adding one more disk doubles the number of steps. 
• We say that the function defined by H(n) grows exponentially

• Solving recurrences in general might be tricky. 
– When the recurrence is of the form T(n)=a T(n/b)+f(n), there is a  general 

method to estimate the growth rate of a function defined by the recurrence
• Called the Master Theorem for recurrences. 

Solving recurrences 



Puzzle: chocolate squares

• Suppose you have a piece of chocolate like this:

• How many squares are in it? 
– of all sizes, from single to the whole thing 


