

COMP 1002

Logic for Computer Scientists

Lecture 25

Puzzle

• Do the following two English sentences have the same parse trees?

– Time flies like an arrow.

- Fruit flies like an apple.

Recursive definitions of sets

- Basis: initial elements in the set
 - a) Empty string is in S.
 - b) Empty string, 0 and 1 are in S.
- **Recursive step:** a rule to make new elements in the set out of existing ones in S
 - a) if $w \in S$, then $w0 \in S$ and $w1 \in S$
 - b) If $w_1 \in S$ and $w_2 \in S$, then $w_1 w_2 \in S$
- **Restriction:** and nothing else is in S.
 - Nothing else is a binary string.
- Both examples define a set of all binary strings {0,1}*
 - Recursive step b) only works with basis b).
 - Recursive step a) works with both basis a) and basis b).

Structural induction

- Let $S \subseteq U$ be a recursively defined set, and F(x) is a property (of $x \in U$).
- Then
 - if all x in the base of S have the property,
 - and applying the recursion rules preserves the property,
 - then all elements in S have the property.

Multiples of 3

- Let's define a set S of numbers as follows.
 - Base: $3 \in S$
 - Recursion: if $x, y \in S$, then $x + y \in S$
- Claim: all numbers in S are divisible by 3
 - That is, $\forall x \in S \exists z \in \mathbb{N} x = 3z$.
- Proof (by structural induction).
 - Base case: 3 is divisible by 3 (z=1).
 - Recursive step:
 - Let $x, y \in S$. Then $\exists z, u \in \mathbb{N} \ x = 3z \land y = 3u$. (inductive hypothesis)
 - Then x + y = 3z + 3u = 3(z + u). (induction step)
 - Therefore, x + y is divisible by 3.
 - As there are no other elements in S except for those constructed from 3 by the recursion rule, all elements in S are divisible by 3.

Trees

- In computer science, a tree is an undirected graph without cycles
 Undirected cycle (not a tree)
 - Undirected: all edges go both ways, no arrows.
 - Cycle: sequence of edges going back to the same point.
- Recursive definition of trees:
 - Base: A single vertex
 is a tree.
 - Recursion:
 - Let *T* be a tree, and *v* a new vertex.
 - Then a new tree consist of T, v, and an edge (connection) between some vertex of T and v.
 - Restriction:
 - Anything that cannot be constructed with this rule from this base is not a tree.

Binary trees

- **Rooted trees** are trees with a special vertex designated as a root.
 - Rooted trees are **binary** if every vertex has at most three edges: one going towards the root, and two going away from the root. **Full** if every vertex has either 2 or 0 edges going away from the root.
- Recursive definition of full binary trees:
 - Base: A single vertex

 is a full binary tree with that vertex as a root.
 - Recursion:
 - Let T_1, T_2 be full binary trees with roots r_1, r_2 , respectively. Let v be a new vertex.
 - A new full binary tree with root v is formed by connecting r_1 and r_2 to v.
 - Restriction:
 - Anything that cannot be constructed with this rule from this base is not a full binary tree.

Height of a full binary tree

- The height of a rooted tree, h(T), is the maximum number of edges to get from any vertex to the root.
 Height of a tree with a single vertex is 0.
- Claim: Let n(T) be the number of vertices in a full binary tree T. Then $n(T) \le 2^{h(T)+1} 1$
- Alternatively, height of a binary tree is at least $\log_2 n(T)$
 - If you have a recursive program that calls itself twice (e.g, within if ... then ... else ...)

Height 2

- Then if this code executes n times (maybe on n different cases)
- Then the program runs in time at least $\log_2 n$, even when cases are checked in parallel.

Height of a full binary tree

- Claim: Let n(T) be the number of vertices in a full binary tree T. Then $n(T) \leq 2^{h(T)+1} - 1$, where h(T) is the height of T.
- Proof (by structural induction)
 - Base case: a tree with a single vertex has n(T) = 1 and h(T) = 0.
 - So $2^{h(T)+1} 1 = 1 \ge 1$
 - Recursion: Suppose T was built by attaching T_1 , T_2 to a new root vertex v.
 - Number of vertices in T is $n(T) = n(T_1) + n(T_2) + 1$
 - Every vertex in T_1 or T_2 now has one extra step to get to the new root in T. - So $h(T) = 1 + \max(h(T_1), h(T_2))$
 - By the induction hypothesis, $n(T_1) \le 2^{h(T_1)+1} 1$ and $n(T_2) \le 2^{h(T_2)+1} 1$

•
$$n(T) = n(T_1) + n(T_2) + 1$$

 $\leq 1 + (2^{h(T_1)+1} - 1) + (2^{h(T_2)+1} - 1)$
 $\leq 2 \cdot \max(2^{h(T_1)+1}, 2^{h(T_2)+1}) - 1$
 $\leq 2 \cdot 2^{\max(h(T_1), h(T_2))+1} - 1$
 $= 2 \cdot 2^{h(T)} - 1 = 2^{h(T)+1} - 1$

- Therefore, the number of vertices of any binary tree T is $\leq 2^{h(T)+1} - 1$

Function growth.

- What does it mean to "grow" at a certain speed? How to compare growth rate of two functions?
 - Is f(n)=100n larger than $g(n) = n^2$?
 - For small n, yes. For n > 100, not so much...
 - As usually program take longer on larger inputs, performance on larger inputs matters more.
 - Constant factors don't matter that much.
- So to compare two functions, check which becomes larger as n increases (to infinity).
 - Ignoring constant factors, as they don't contribute to the rate of growth.

Function growth.

How to estimate the rate of growth?
 – Plotting a graph?

- Not quite conclusive:
 - How do you know what they will do past the graphed part?

O-notation.

- We say that f(n) grows at most as fast as g(n) if
 - There is a value n_0 such that after n_0 , f(n) is always at most as large as g(n)
 - More precisely, compare absolute values: |g(n)| vs. |f(n)|
 - Moreover, ignore constant factors:
 - So if two functions only differ by a constant factor, consider them having the same growth rate.
- Denote set of all functions growing at most as fast as g(n) by $m{O}(m{g}(m{n}))$
 - Big-Oh of g(n).
 - g(n) is an asymptotic upper bound for f(n).
 - When both $f(n) \in O(g(n))$ and $g(n) \in O(f(n))$, write $f(n) \in \Theta(g(n))$
 - f(n) is in **big-Theta** of g(n)).
- More generally, for real-valued functions f(x) and g(x),

$$f(x) \in O(g(x)) \text{ iff}$$
$$\exists x_0 \in \mathbb{R}^{\ge 0} \ \exists c \in \mathbb{R}^{\ge 0} \ \forall x \ge x_0 \ |f(x)| \le c \cdot |g(x)|$$

- That is, from some point x_0 on, each |f(x)| is less than |g(x)| (up to a constant factor).
- Usually in time complexity have functions $\mathbb{N} \to \mathbb{R}^{\geq 0}$, so use *n* for *x* and ignore | |.

O-notation.

 $f(n) \in O(g(n))$ iff

 $\exists n_0 \in \mathbb{N} \ \exists c \in \mathbb{R}^{>0} \ \forall n \ge n_0 \ f(n) \le c \cdot g(n)$

•
$$f(n) = n^2$$
, $g(n) = 2^n$.
- Take c=1, $n_0 = 4$.

- For every
$$n \ge n_0$$
, $f(n) \le g(n)$

- So
$$n^2 \in O(2^n)$$

•
$$f(n) = n^2$$
, $g(n) = 10n$.

- Take arbitrary *c* and look at $n^2 \le c \cdot 10n$.
- No matter what *c* is, when $n > c \cdot 10$, $n^2 \ge c \cdot 10n$

- So $n^2 \notin O(10n)$.

- $f(n) = n^2 + 100n, g(n) = 10n^2.$
 - Here, $f(n) \in O(g(n))$ and also $g(n) \in O(f(n))$
 - So $f(n) \in \Theta(g(n))$
 - $f(n) \in O(g(n))$: c = 20 and/or $n_0 = 100$ work.
 - $g(n) \in O(f(n))$: Take c=10, $n_0 = 1$.
 - Can ignore not only constants, but also all except the leading term in the expression.

You will see some O-notation in COMP 1000 and a lot in COMP 2002.

Tower of Hanoi game

- Rules of the game:
 - Start with all disks on the first peg.
 - At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.
 - Goal: move the whole tower onto the second peg.
- Question: how many steps are needed to move the tower of 8 disks? How about n disks?

Tower of Hanoi game

- Rules of the game:
 - Start with all disks on the first peg.
 - At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.
 - Goal: move the whole tower onto the second peg.
- Question: how many steps are needed to move the tower of 8 disks? How about n disks?
- Let us call the number of moves needed to transfer n disks H(n).
 - Names of pegs do not matter: from any peg i to any peg $j \neq i$ would take the same number of steps.
- Basis: only one disk can be transferred in one step.
 - So H(1) = 1
- Recursive step:
 - suppose we have n-1 disks. To transfer them all to peg 2, need H(n-1) number of steps.
 - To transfer the remaining disk to peg 3, 1 step.
 - To transfer n-1 disks from peg 2 to peg 3 need H(n-1) steps again.
 - So H(n) = 2H(n-1)+1 (recurrence).
- Closed form: $H(n) = 2^n 1$.

Recurrence relations

- **Recurrence**: an equation that defines an *n*th element in a sequence in terms of one or more of previous terms.
 - Think of $F(n) = s_n$ for some sequence $\{s_n\}$

$$-H(n) = 2H(n-1) + 1$$

$$-F(n) = F(n-1) + F(n-2)$$

- A closed form of a recurrence relation is an expression that defines an nth element in a sequence in terms of n directly.
 - Often use recurrence relations and their closed forms to describe performance of (especially recursive) algorithms.

a+b

Closed forms of some sequences

- Arithmetic progression:
 - Sequence: $c, c + d, c + 2d, c + 3d, \dots, c + nd, \dots$
 - Closed form: $s_n = c + nd$
 - Closed forms are very useful for analysis of recursive programs, etc.
- Geometric progression:
 - Sequence: $c, cr, cr^2, cr^3, \dots, cr^n, \dots$
 - Closed form: $s_n = c \cdot r^n$
- Fibonacci sequence: F(n)=F(n-1)+F(n-2)
 - Sequence: 1,1,2,3,5,8,13, ...
 - Closed form: $F_n = \frac{\varphi^{n} (1-\varphi)^n}{\sqrt{5}}$
 - Where φ ("*phi*") is the "golden ratio": a ratio such that $\frac{a+b}{a} = \frac{a}{b}$

•
$$\varphi = \frac{1+\sqrt{5}}{2}$$

Solving recurrences

- Solving a recurrence: finding a closed form.
 - Solving the recurrence H(n)=2H(n-1)+1

•
$$H(n) = 2 \cdot H(n-1) + 1$$

= $2(2H(n-2) + 1) + 1 = 2^2H(n-2) + 2 + 1$
= $2^3H(n-3) + 2^2 + 2 + 1$
= $2^4H(n-4) + 2^3 + 2^2 + 2 + 1 \dots$

- Closed form: $H(n) = \sum_{i=0}^{n-1} 2^i = 2^n 1$
 - Proof by induction (coming in the next lecture).
 - Or by noticing that a binary number 111...1 plus 1 gives a binary number 10000...0
- So adding one more disk doubles the number of steps.
 - We say that the function defined by H(n) grows exponentially
- Solving recurrences in general might be tricky.
 - When the recurrence is of the form T(n)=a T(n/b)+f(n), there is a general method to estimate the growth rate of a function defined by the recurrence
 - Called the Master Theorem for recurrences.

Puzzle: chocolate squares

• Suppose you have a piece of chocolate like this:

How many squares are in it?
– of all sizes, from single to the whole thing