COMP 1002

Logic for Computer Scientists

Lecture 24

:[s[2].

i
Ei-;i_

Puzzle Jﬁk

A ship leaves a pair of rabbits on an island
(with a lot of food).

After a pair of rabbits reaches 2 months of age,
they produce another pair of rabbits, and keep
producing a pair every month thereafter.

Which in turn starts reproducing every month
when reaching 2 months of age...

How many pairs of rabbits will be on the island
in 1 months, assuming no rabbits die?

v
[o
LAl NE

Fibonacci sequence

) el

* A ship leaves a pair of rabbits on an island (with a lot of food).

e After a pair of rabbits reaches 2 months of age, they produce
another pair of rabbits, and keep producing a pair every month

thereafter. Which in turn starts reproducing every month when s»/

reaching 2 months of age... ,ﬂ{f;,
 How many pairs of rabbits will be on the island in n months, b 014
assuming no rabbits die? YNGT"
* Basis: F;=1, F, =1
* Recurrence: F,, = F,,_1 + F,,_> S Lo Gox

* Sequence: 1,1,2,3,5,8,13...

s 2 NNy S OWREEN R\ ¥
4%, (9% (S [SW (B
U FANSNO TR SNG TEING TRENG I

YR Y S Y LY YR T T v
% i bRk hal BBl B
!,\: ‘f" !A- ‘f" ‘{,_ 5,_“/ »—“‘f"‘
NG TR PN TN PENG MANG SPNR RS

&5

~tuti, el
Partial sums
* Properties of a sum (”Iinearity”)'
— 2iem @ +9@) = Zity, D) + Xitm 9
— Yi=m € - f()) = c X mf(l)
Sum of arithmetic progression: Sum of geometric progression:
sp,=c+nd forsomec,d €R s, =c-r'*forsomec,r € R
Sequence: ¢,c +d,c+2d,c+3d,..,c+nd,.. Sequence: c,cr,cr? crd, .. cr®, ..
Partial sum: Partial sum:
n n n n
| Sn=Z(c+id)=Zc+Zid= n C(n+1) r=1
(=0 =0 %:0 (=0 z Sn pnti_
— if r+1
—c(n+1)+dzl i=0 -
=0
1
=c(n+1)+d (n+1)

Fractals

e Can use recursive definitions to define fractals
— And draw them
— And prove their properties.

* Self-similar: a part looks like the whole.

Fractals in nature

A fern leaf

Broccoli

Mountains

Stock market

Heat beat

Silicon Alley Insider A,/ Chart of the Day

HTC Stock Performance

NT$1,400
NT$1,200
NT$1,000
NT$800
NT$600
NT$400
NT$200

NTSO

Oct Dec Mar May Aug Oct Jan Mar Jun Aug Nov

v Jan Jun Sep Nov Feb Apr Aug
08 08 09 09 09 '09 10 ‘10 '10 ‘10 ‘10

an Apr
SR O T TR TR T R Y]

Mathematical fractals

Koch curve and snowflake

Sierpinski triangle, pyramid, carpet

Hilbert space-filling curve

Mandelbrot set - 0‘

Koch curve

 Basis: an interval o
* Recursive step:

Replace the inner third M
of the interval with
two of the same ﬁﬁm
length m%

Continue ...

Playing with fractals

* Fractal Grower by Joel Castellanos:

e http://www.cs.unm.edu/~joel/PaperFoldingFr
actal/paper.html

http://www.cs.unm.edu/~joel/PaperFoldingFractal/paper.html

Recursive definitions of sets

e So far, we talked about recursive definitions of
sequences. We can also recursively define sets.

— E.g: recursive definition of a set S={0,1}"
* Basis: empty stringisin S.
* Recursive step: ifw € S, thenw0O €S andwl €S
— Here, w0 means string w with 0 appended at the end; same for wl
— Alternatively:
e Basis: empty string, 0 and 1 are in S.

e Recursive step: ifs andtareinS, thenste S

— here, st is concatenation: symbols of s followed by symbols of t
— If s=101 and t= 0011, then st = 1010011

— Additionally, need a restriction condition: the set S contains
only elements produced from basis using recursive step rule.

Trees o

* In computer science, a tree is an undirected eA@
graph without cycles Undirected cycle

— Undirected: all edges go both ways, no arrows."" "¢

— Cycle: sequence of edges going back to the same
point.

e Recursive definition of trees:

— Base: A single vertex @ is a tree.

— Recursion:
 Let T be a tree, and v a new vertex.

 Then a new tree consist of T, v, and an edge (connection)
between some vertex of T and v.

— Restriction:

* Anything that cannot be constructed with this rule from
this base is not a tree.

Arithmetic expressions

e Suppose you are writing a piece of code that takes an
arithmetic expression and, say evaluates it.

— “5%3.1" “40-(x+1)*7” etc
 How to describe a valid arithmetic expression? Define
a set of all valid arithmetic expressions recursively.
— Base: A number or a variable is a valid arithmetic
expression.
* 5,100, x, 3,
— Recursion:

* If A and B are valid arithmetic expressions, then so are (A), A +
B,A— B, AxB,A/B.

— Constructing 40-(x+1)*7: first construct 40, x, 1, 7. Then x+1. Then (x+1).
Then (x+1)*7, finally 40-(x+1)*7

— Caveat: how do we know the order of evaluation? On that later.
— Restriction: nothing else is a valid arithmetic expression.

Formulas

 What is a well-formed propositional logic
formula?
- (Vg Ar > (ap o 1)
— Base: a propositional variable p, g, 7 ...
e Oraconstant TRUE,FALSE

— Recursion:

* If Fand G are propositional formulas, so are (F), —F,
FAGFVG,F -G F oG.

— And nothing else.

Formulas

 What is a well-formed predicate logic formula?

—3Jdx €E€EDVy€EZ P((x,y) VQ(x,Z)) Ax =Yy
— Base: a predicate with free variables

* P(x), x=vy, ...
— Recursion:

* If Fand G are predicate logic formulas, so are (F), =F, F A
G, FVGF - G,F & G.

* If Fis a predicate logic formula with a free variable x, then
dx € DF and Vx € D F are predicate logic formulas.

— And nothing else.

* So dx € People Likes(x,y Ax), Likes(y # x) is not a
well-formed predicate logic formula!

Grammars

* A general recursive definition for these is called a grammar.

— |In particular, here we have “context-free” grammars, where
symbols have the same meaning wherever they are.

* A context-free grammar consists of
— A set V of variables (using capital letters)

Including a start variable S.

— A set X of terminals (disjoint from V; alphabet)

— A set R of rules, where each rule consists of a variable from V and a
string of variables and terminals.

If A — wis arule, we say variable A vyields string w.

— This is not the same “— " as implication, a different use of the same symbol.
We use shortcut “|” when the same variable might yield several possible
strings: A = wy| wy| ... |wy
Can use A again within the rule: Recursion!

— Different occurrences of the same variable can be interpreted as different strings.

When left with just terminals, a string is derived.

Grammars

* A language generated by a grammar consists of all
strings of terminals that can be derived from the
start variable by applying the rules.

— All strings are derived by repeatedly applying the
grammar rules to each variable until there are no
variables left (just the terminals).

— Language {1, 00} consisting of two strings 1 and 00
+ S > 1] 00

— Variables: S. Terminals: 1 and 00.

— Language of all strings over {0,1} with all Os before all 1s.
e $-50S5|S51]|_

— Variables: S. Terminals: 0 and 1.

I\/Iore context-free grammars

* Propositional formulas.
1. F- FVF
2 F->FAF
3. F - —F
4 F - (F)
5. F->pl|lql|r| TRUE |FALSE

* Here, the only variable is F (it is a start variable), and terminals are V,A
,=,(),p,q, 7, TRUE,FALSE

* Toobtain (p V —q) A, first apply rule 2, then rule 4 to strip parentheses from (p V —q),
then rule 1, then rule 5 to get p, then rule 3, then rule 5 to get g, then rule 5 to get r.

* Arithmetic expressions.

— EXPR - EXPR + EXPR | EXPR — EXPR | EXPR = EXPR | EXPR / EXPR
|(EXPR) | NUMBER |-NUMBER

— NUMBER — ODIGITS |...|9DIGITS

- DIGITS — _| NUMBER

Here, _ stands for empty string. Variables: EXPR, NUMBER, DIGITS (S is starting).
Terminals: +,-,%/,0,..,9,().

* We used separate NUMBER to avoid multiple “-”.

* And separate DIGITS to have an empty string to finish writing a number, but to avoid an
empty number.

| Grammar ||
Police

Encoding order of precedence

e Easier to specify in which order to process parts
of the formula.
— Better grammar for arithmetic expressions (for
simplicity, with x,y,z instead of numbers):

1. EXPR - EXPR + TERM |EXPR —TERM| TERM
2. TERM —» TERM x FACTOR |TERM / FACTOR | FACTOR

3. FACTOR - (EXPR) | x|vy|z

— Here, variables are EXPR, TERM and FACTOR (with
EXPR a starting variable).

— Now can encode precedence.
* And put parentheses more sensibly.

Parse trees.

* Visualization of derivations: parse trees.

> EXPR + [EXPR — TERM|
- . | TERM / |
> (EXPR) | x|y | 2
e String (x+y)*z
— Simpler example: __—
- 05|51]_
« String 001 |
/ / \
(
1 +
P P . \
0 0
S S~ | /
1 0 -
! | :
0 0 1 0 0 1 (X + y

Puzzle

* Do the following two English sentences have
the same parse trees?

— Time flies like an arrow. -

-

— Fruit flies like an apple.

