
Lecture 24

COMP 1002

Logic for Computer Scientists

B J25

Puzzle

• A ship leaves a pair of rabbits on an island
(with a lot of food).

• After a pair of rabbits reaches 2 months of age,
they produce another pair of rabbits, and keep
producing a pair every month thereafter.

• Which in turn starts reproducing every month
when reaching 2 months of age…

• How many pairs of rabbits will be on the island
in 𝑛 months, assuming no rabbits die?

Fibonacci sequence

• A ship leaves a pair of rabbits on an island (with a lot of food).
• After a pair of rabbits reaches 2 months of age, they produce

another pair of rabbits, and keep producing a pair every month
thereafter. Which in turn starts reproducing every month when
reaching 2 months of age…

• How many pairs of rabbits will be on the island in 𝑛 months,
assuming no rabbits die?

• Basis: 𝐹1 = 1, F2 = 1

• Recurrence: 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2
• Sequence: 1,1,2,3,5,8,13…

Partial sums

• Properties of a sum (“linearity”):
– σ𝑖=𝑚

𝑛 (𝑓 𝑖 + 𝑔 𝑖) = σ𝑖=𝑚
𝑛 𝑓(𝑖) + σ𝑖=𝑚

𝑛 𝑔(𝑖)

– σ𝑖=𝑚
𝑛 𝑐 ⋅ 𝑓(𝑖) = 𝑐 σ𝑖=𝑚

𝑛 𝑓(𝑖)

Sum of geometric progression:
𝑠𝑛 = 𝑐 ⋅ 𝑟𝑛 for some c, 𝑟 ∈ ℝ
Sequence: 𝑐, 𝑐𝑟, 𝑐𝑟2, 𝑐𝑟3, … , 𝑐𝑟𝑛, …
Partial sum:

෍

𝑖=0

𝑛

𝑠𝑛 = ൝
𝑐 𝑛 + 1 , 𝑖𝑓 𝑟 = 1
𝑐𝑟𝑛+1−𝑐
𝑟−1

, 𝑖𝑓 𝑟 ≠ 1

Sum of arithmetic progression:
𝑠𝑛 = 𝑐 + 𝑛𝑑 for some c, 𝑑 ∈ ℝ
Sequence: 𝑐, 𝑐 + 𝑑, 𝑐 + 2𝑑, 𝑐 + 3𝑑,… , 𝑐 + 𝑛𝑑,…

Partial sum:

෍

𝑖=0

𝑛

𝑠𝑛 = ෍

𝑖=0

𝑛

(𝑐 + 𝑖𝑑) = ෍

𝑖=0

𝑛

𝑐 +෍

𝑖=0

𝑛

𝑖𝑑 =

= c(n + 1) + d෍

𝑖=0

𝑛

𝑖 =

= 𝑐(𝑛 + 1) + 𝑑
𝑛 𝑛 + 1

2

Fractals

• Can use recursive definitions to define fractals

– And draw them

– And prove their properties.

• Self-similar: a part looks like the whole.

Fractals in nature
• A fern leaf

• Broccoli

• Mountains

• Stock market

• Heat beat

Mathematical fractals

• Koch curve and snowflake

• Sierpinski triangle, pyramid, carpet

• Hilbert space-filling curve

• Mandelbrot set

Koch curve

• Basis: an interval

• Recursive step:
Replace the inner third
of the interval with
two of the same
length

• …

Playing with fractals

• Fractal Grower by Joel Castellanos:

• http://www.cs.unm.edu/~joel/PaperFoldingFr
actal/paper.html

http://www.cs.unm.edu/~joel/PaperFoldingFractal/paper.html

Recursive definitions of sets

• So far, we talked about recursive definitions of
sequences. We can also recursively define sets.
– E.g: recursive definition of a set S= 0,1 ∗

• Basis: empty string is in S.
• Recursive step: if 𝑤 ∈ 𝑆, then 𝑤0 ∈ 𝑆 and 𝑤1 ∈ 𝑆

– Here, 𝑤0 means string w with 0 appended at the end; same for w1

– Alternatively:
• Basis: empty string, 0 and 1 are in S.
• Recursive step: if s and t are in S, then st ∈ 𝑆

– here, st is concatenation: symbols of s followed by symbols of t
– If s = 101 and t= 0011, then st = 1010011

– Additionally, need a restriction condition: the set S contains
only elements produced from basis using recursive step rule.

Trees

• In computer science, a tree is an undirected
graph without cycles
– Undirected: all edges go both ways, no arrows.
– Cycle: sequence of edges going back to the same

point.

• Recursive definition of trees:
– Base: A single vertex is a tree.
– Recursion:

• Let 𝑇 be a tree, and 𝑣 a new vertex.
• Then a new tree consist of 𝑇, 𝑣, and an edge (connection)

between some vertex of 𝑇 and 𝑣.

– Restriction:
• Anything that cannot be constructed with this rule from

this base is not a tree.

1

2

3

Undirected cycle
(not a tree)

𝑣

𝑣1

𝑣2 𝑣3

𝑣4

𝑣5

Arithmetic expressions

• Suppose you are writing a piece of code that takes an
arithmetic expression and, say evaluates it.
– “5*3-1”, “40-(x+1)*7”, etc

• How to describe a valid arithmetic expression? Define
a set of all valid arithmetic expressions recursively.
– Base: A number or a variable is a valid arithmetic

expression.
• 5, 100, x, a,

– Recursion:
• If A and B are valid arithmetic expressions, then so are (A), 𝐴 +
𝐵, 𝐴 − 𝐵, 𝐴 ∗ 𝐵, 𝐴 / B.
– Constructing 40-(x+1)*7: first construct 40, x, 1, 7. Then x+1. Then (x+1).

Then (x+1)*7, finally 40-(x+1)*7
– Caveat: how do we know the order of evaluation? On that later.

– Restriction: nothing else is a valid arithmetic expression.

Formulas

• What is a well-formed propositional logic
formula?

– 𝑝 ∨ ¬𝑞 ∧ 𝑟 → ¬𝑝 → 𝑟

– Base: a propositional variable 𝑝, 𝑞, 𝑟 …

• Or a constant 𝑇𝑅𝑈𝐸, 𝐹𝐴𝐿𝑆𝐸

– Recursion:

• If F and G are propositional formulas, so are 𝐹 , ¬𝐹,
𝐹 ∧ 𝐺, 𝐹 ∨ 𝐺, 𝐹 → 𝐺, 𝐹 ↔ 𝐺.

– And nothing else.

Formulas

• What is a well-formed predicate logic formula?

– ∃𝑥 ∈ 𝐷 ∀𝑦 ∈ ℤ 𝑃 𝑥, 𝑦 ∨ 𝑄 𝑥, 𝑧 ∧ 𝑥 = 𝑦

– Base: a predicate with free variables
• P(x), x=y, …

– Recursion:
• If F and G are predicate logic formulas, so are 𝐹 , ¬𝐹, 𝐹 ∧
𝐺, 𝐹 ∨ 𝐺, 𝐹 → 𝐺, 𝐹 ↔ 𝐺.

• If 𝐹 is a predicate logic formula with a free variable x, then
∃𝑥 ∈ 𝐷 𝐹 and ∀𝑥 ∈ 𝐷 𝐹 are predicate logic formulas.

– And nothing else.
• So ∃𝑥 ∈ 𝑃𝑒𝑜𝑝𝑙𝑒 𝐿𝑖𝑘𝑒𝑠 𝑥, 𝑦 ∧ 𝑥 , 𝐿𝑖𝑘𝑒𝑠 𝑦 ≠ 𝑥 is not a

well-formed predicate logic formula!

Grammars
• A general recursive definition for these is called a grammar.

– In particular, here we have “context-free” grammars, where
symbols have the same meaning wherever they are.

• A context-free grammar consists of
– A set V of variables (using capital letters)

• Including a start variable S.

– A set Σ of terminals (disjoint from V; alphabet)
– A set R of rules, where each rule consists of a variable from V and a

string of variables and terminals.
• If 𝐴 → 𝑤 is a rule, we say variable 𝐴 yields string w.

– This is not the same “→ " as implication, a different use of the same symbol.

• We use shortcut “|” when the same variable might yield several possible
strings: 𝐴 → 𝑤1 𝑤2 … |𝑤𝑘

• Can use A again within the rule: Recursion!
– Different occurrences of the same variable can be interpreted as different strings.

• When left with just terminals, a string is derived.

Grammars
• A language generated by a grammar consists of all

strings of terminals that can be derived from the
start variable by applying the rules.
– All strings are derived by repeatedly applying the

grammar rules to each variable until there are no
variables left (just the terminals).

– Language {1, 00} consisting of two strings 1 and 00
• 𝑆 → 1 | 00

– Variables: S. Terminals: 1 and 00.

– Language of all strings over {0,1} with all 0s before all 1s.
• 𝑆 → 0𝑆 𝑆1 _

– Variables: S. Terminals: 0 and 1.

More context-free grammars

• Propositional formulas.
1. 𝐹 → 𝐹 ∨ 𝐹
2. F → 𝐹 ∧ 𝐹
3. 𝐹 → ¬𝐹
4. 𝐹 → 𝐹
5. 𝐹 → 𝑝 𝑞 𝑟 𝑇𝑅𝑈𝐸 𝐹𝐴𝐿𝑆𝐸

• Here, the only variable is F (it is a start variable), and terminals are ∨,∧
, ¬, , , 𝑝, 𝑞, 𝑟, 𝑇𝑅𝑈𝐸, 𝐹𝐴𝐿𝑆𝐸

• To obtain 𝑝 ∨ ¬𝑞 ∧ 𝑟, first apply rule 2, then rule 4 to strip parentheses from 𝑝 ∨ ¬𝑞 ,
then rule 1, then rule 5 to get p, then rule 3, then rule 5 to get q, then rule 5 to get r.

• Arithmetic expressions.
– 𝐸𝑋𝑃𝑅 → 𝐸𝑋𝑃𝑅 + 𝐸𝑋𝑃𝑅 𝐸𝑋𝑃𝑅 − 𝐸𝑋𝑃𝑅 𝐸𝑋𝑃𝑅 ∗ 𝐸𝑋𝑃𝑅 | 𝐸𝑋𝑃𝑅 / 𝐸𝑋𝑃𝑅

| 𝐸𝑋𝑃𝑅 | 𝑁𝑈𝑀𝐵𝐸𝑅|-NUMBER
– NUMBER → 0𝐷𝐼𝐺𝐼𝑇𝑆 … 9𝐷𝐼𝐺𝐼𝑇𝑆

– 𝐷𝐼𝐺𝐼𝑇𝑆 → _| 𝑁𝑈𝑀𝐵𝐸𝑅
• Here, _ stands for empty string. Variables: EXPR, NUMBER, DIGITS (S is starting).

Terminals: +,-,*, /, 0,…,9,(,).
• We used separate NUMBER to avoid multiple “-”.
• And separate DIGITS to have an empty string to finish writing a number, but to avoid an

empty number.

Encoding order of precedence

• Easier to specify in which order to process parts
of the formula.
– Better grammar for arithmetic expressions (for

simplicity, with x,y,z instead of numbers):
1. 𝐸𝑋𝑃𝑅 → 𝐸𝑋𝑃𝑅 + 𝑇𝐸𝑅𝑀 |𝐸𝑋𝑃𝑅 − 𝑇𝐸𝑅𝑀| 𝑇𝐸𝑅𝑀
2. 𝑇𝐸𝑅𝑀 → 𝑇𝐸𝑅𝑀 ∗ 𝐹𝐴𝐶𝑇𝑂𝑅 | 𝑇𝐸𝑅𝑀 / 𝐹𝐴𝐶𝑇𝑂𝑅 | 𝐹𝐴𝐶𝑇𝑂𝑅

3. 𝐹𝐴𝐶𝑇𝑂𝑅 → 𝐸𝑋𝑃𝑅 | x | y | z

– Here, variables are EXPR, TERM and FACTOR (with
EXPR a starting variable).

– Now can encode precedence.
• And put parentheses more sensibly.

Parse trees.
• Visualization of derivations: parse trees.

1. 𝐸𝑋𝑃𝑅 → 𝐸𝑋𝑃𝑅 + 𝑇𝐸𝑅𝑀 |𝐸𝑋𝑃𝑅 − 𝑇𝐸𝑅𝑀| 𝑇𝐸𝑅𝑀

2. 𝑇𝐸𝑅𝑀 → 𝑇𝐸𝑅𝑀 ∗ 𝐹𝐴𝐶𝑇𝑂𝑅 | 𝑇𝐸𝑅𝑀 / 𝐹𝐴𝐶𝑇𝑂𝑅 | 𝐹𝐴𝐶𝑇𝑂𝑅

3. 𝐹𝐴𝐶𝑇𝑂𝑅 → 𝐸𝑋𝑃𝑅 | x | y | z

• String (x+y)*z

– Simpler example:
• 𝑆 → 0𝑆 𝑆1 _

• String 001

EXPR

TERM

EXPR

TERM FACTOR

FACTOR z

()

*

EXPR TERM+

TERM

FACTOR

FACTOR

x

y

(x + y) * z

S

S

S

1

0

0

S

_

0 0 1

S

S

S

0

1

0

S

_

0 0 1

Puzzle

• Do the following two English sentences have
the same parse trees?

– Time flies like an arrow.

– Fruit flies like an apple.

