

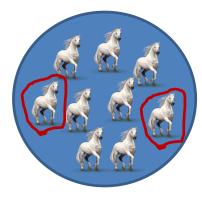
COMP 1002

Logic for Computer Scientists

Lecture 23

Puzzle: all horses are white

- Claim: all horses are white.
- Proof (by induction):
 - P(n): any n horses are white.
 - Base case: P(0) holds vacuously
 - Induction hypothesis: any k horses are white.
 - Induction step: if any k horses are white, then any k+1 horses are white.
 - Take an arbitrary set of k+1 horses. Take a horse out.
 - The remaining k horses are white by induction hypothesis.
 - Now put that horse back in, and take out another horse.
 - Remaining k horses are again white by induction hypothesis.
 - Therefore, all the k+1 horses in that set are white.
 - By induction, all horses are white.



Strong induction: product of primes

- Strong Induction principle (general form):
 - $(\exists b \ge a \ \forall c \in \{a, b\} P(c)) \land \forall k > b \ (\forall i \in \{a, \dots, k-1\} P(i)) \rightarrow P(k))$ $\rightarrow \forall x \in \mathbb{N} (x \ge a \rightarrow P(x))$
- Theorem: Every natural number ≥ 2 is a product of powers of prime numbers.
 - P(n): $\exists m \in \mathbb{N} \exists p_1, ..., p_m, d_1, ..., d_m$ such that $n = p_1^{d_1} \cdot p_2^{d_2} \cdot ... \cdot p_m^{d_m}$ • For example, $24 = 2^3 \cdot 3^1$, $23 = 23^1$
 - Base case: a = b = 2. 2 is a prime, so P(2) holds with m = 1, $p_1 = 2$, $d_1 = 1$.
 - Induction hypothesis: Let k be an arbitrary integer > 2. Assume that $\forall i \in \{2, ..., k-1\} \exists m \in \mathbb{N} \exists p_1, ..., p_m, d_1, ..., d_m \quad i = p_1^{d_1} \cdot p_2^{d_2} \cdot ... \cdot p_m^{d_m}$
 - Induction step. Show that the induction hypothesis implies that

$$\exists m' \in \mathbb{N} \ \exists q_1, \dots, q_{m'}, d'_1, \dots, d'_{m'} \ k = q_1^{d'_1} \cdot q_2^{d'_2} \cdot \dots \cdot q_{m'}^{d'_{m'}}$$

Strong induction: product of primes

- Induction hypothesis: Let k be an arbitrary integer > 2. Assume that $\forall i \in \{2, ..., k-1\} \exists m \in \mathbb{N} \exists p_1, ..., p_m, d_1, ..., d_m \quad i = p_1^{d_1} \cdot p_2^{d_2} \cdot ... \cdot p_m^{d_m}$
- Induction step. Show that the induction hypothesis implies that

$$\exists m' \in \mathbb{N} \ \exists q_1, \dots, q_{m'}, d'_1, \dots, d'_{m'} \ k = q_1^{d'_1} \cdot q_2^{d'_2} \cdot \dots \cdot q_{m'}^{d'_{m'}}$$

- Rename variables to distinguish from induction hypothesis.
- Case 1: k is prime. Then m' = 1, $q_1 = k$, $d'_1 = 1$
- Case 2: k is not prime. Then $k = k_1 \cdot k_2$. By induction hypothesis, both k_1 and k_2 are products of primes.
 - Here is where *strong* induction is useful.
 - Then get m', $q_1 \dots q_{m'}$, $d'_1, \dots, d'_{m'}$ as follows:
 - Let m' be the number of unique primes in k_1, k_2 (that is, if a prime occurs in both, count it once.) Then $q_1 \dots q_{m'}$ is the set of unique primes in k_1 and k_2 .
 - If a prime p occurs in both k_1 and k_2 , it will be in ${\bf k}$ with power which is sum of its powers in k_1,k_2
 - If it occurs in only one of k_1, k_2 , put it in k with the same power it had where it appeared.
- By strong induction, every number ≥ 2 is a product of prime powers.

Recurrences and sequences

- To define a sequence (of things), describe a process generating it.
 - Sequence: enumeration of objects $s_1, s_2, s_3, \dots, s_n, \dots$,
 - Sometimes use notation $\{s_n\}$ for the sequence (set of elements forming a sequence)
 - Basis (initial conditions): what are the first (few) element(s) in the sequence.
 - $\sum_{i=m}^{m} i = m$.
 - 0! = 1. 1!=1.
 - $A_0 = \emptyset$
 - Recurrence (recursion step, inductive definition): a rule to make a next element from already constructed ones.
 - $\sum_{i=m}^{n+1} i = (\sum_{i=m}^{n} i) + (n+1)$. Here, assume that $m \le n$, make it 0 otherwise
 - $(n+1)! = n! \cdot (n+1)$
 - $A_{n+1} = \mathcal{P}(A_n)$
- Resulting sequences:
 - m, 2m+1, 3m+3, ...
 - 1, 2,6, 24, 120, ...
 - $\ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \ \left\{\emptyset, \{\emptyset\}\}, \ \left\{\emptyset, \{\emptyset\}\}\right\}, \ \left\{\emptyset, \{\emptyset\}\}\right\}, \ \dots$

Special sequences

- Arithmetic progression:
 - Sequence: $c, c + d, c + 2d, c + 3d, \dots, c + nd, \dots$
 - Recursive definition:
 - Basis: $s_0 = c$, for some $c \in \mathbb{R}$
 - Recurrence: $s_{n+1} = s_n + d$, where $d \in \mathbb{R}$ is a fixed number.
- Geometric progression:
 - Sequence: $c, cr, cr^2, cr^3, ..., cr^n, ...$
 - Recursive definition:
 - Basis: $s_0 = c$, for some $c \in \mathbb{R}$
 - Recurrence: $s_{n+1} = s_n \cdot r$, where $r \in \mathbb{R}$ is a fixed number.

Puzzle

- A ship leaves a pair of rabbits on an island (with a lot of food).
- After a pair of rabbits reaches 2 months of age, they produce another pair of rabbits, and keep producing a pair every month thereafter.
- Which in turn starts reproducing every month when reaching 2 months of age...
- How many pairs of rabbits will be on the island in *n* months, assuming no rabbits die?

