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Admin stuff

• Assignment 4 is posted 

– Due Tuesday,  March 12



Partial and total orders 
• A binary relation  𝑅 ⊆ 𝐴 × 𝐴 is an order if R is 

– Reflexive ∀𝑥 ∈ 𝐴 𝑅(𝑥, 𝑥)
– Anti-symmetric ∀𝑥, 𝑦 ∈ 𝐴 𝑅 𝑥, 𝑦 ∧ 𝑅 𝑦, 𝑥 → 𝑥 = 𝑦
– Transitive ∀ 𝑥, 𝑦, 𝑧 ∈ 𝐴 𝑅 𝑥, 𝑦 ∧ 𝑅 𝑦, 𝑧 → 𝑅(𝑥, 𝑧)

• R is a total order if ∀𝑥, 𝑦 ∈ 𝐴 𝑅 𝑥, 𝑦 ∨ 𝑅(𝑦, 𝑥)
• That is, every two elements of A are related. 
• E.g.  𝑅1 = 𝑥, 𝑦 𝑥, 𝑦 ∈ ℤ ∧ 𝑥 ≤ 𝑦} is a total order.  
• So is alphabetical order of English words.  
• But not 𝑅2 = 𝑥, 𝑦 𝑥, 𝑦 ∈ ℤ ∧ 𝑥 < 𝑦}

– not reflexive, so not an order. 

• Otherwise, R is a partial order. 
• 𝑆𝑈𝐵𝑆𝐸𝑇𝑆 = 𝐴, 𝐵 𝐴, 𝐵 𝑎𝑟𝑒 𝑠𝑒𝑡𝑠 ∧ 𝐴 ⊆ 𝐵 } is a partial order. 

– Reflexive:  ∀𝐴, 𝐴 ⊆ 𝐴
– Anti-symmetric:  ∀ 𝐴, 𝐵 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 → 𝐴 = 𝐵
– Transitive:  ∀𝐴, 𝐵, 𝐶 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶
– Not total:   if A ={1,2} and B ={1,3}, then neither 𝐴 ⊆ 𝐵 nor 𝐵 ⊆ 𝐴

• 𝐷𝐼𝑉𝐼𝑆𝑂𝑅𝑆 = {(x,y)| 𝑥, 𝑦 ∈ ℕ ∧ 𝑥, 𝑦 ≥ 2 ∧ ∃𝑧 ∈ ℕ 𝑦 = 𝑧 ⋅ 𝑥} is a partial order.
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Partial and total orders 
• A binary relation  𝑅 ⊆ 𝐴 × 𝐴 is an order if R is 

– Reflexive, Anti-symmetric, Transitive
– R is a total order if ∀𝑥, 𝑦 ∈ 𝐴 𝑅 𝑥, 𝑦 ∨ 𝑅(𝑦, 𝑥)

• 𝑅1 = 𝑥, 𝑦 𝑥, 𝑦 ∈ ℤ ∧ 𝑥 ≤ 𝑦} is a total order.  
• So is alphabetical order of English words.  

– Otherwise, R is a partial order. 
• 𝑆𝑈𝐵𝑆𝐸𝑇𝑆 = 𝐴,𝐵 𝐴, 𝐵 𝑎𝑟𝑒 𝑠𝑒𝑡𝑠 ∧ 𝐴 ⊆ 𝐵 }
• 𝐷𝐼𝑉𝐼𝑆𝑂𝑅𝑆 = {(x,y)| 𝑥, 𝑦 ∈ ℕ ∧ 𝑥, 𝑦 ≥ 2 ∧ ∃𝑧 ∈ ℕ 𝑦 = 𝑧 ⋅ 𝑥}

• An order may have minimal and maximal elements 
(maybe multiple)
– 𝑥 ∈ 𝐴 is minimal in R if ∀𝑦 ∈ 𝐴 𝑦 ≠ 𝑥 → ¬𝑅(𝑦, 𝑥)

and maximal if ∀𝑦 ∈ 𝐴 𝑦 ≠ 𝑥 → ¬𝑅 𝑥, 𝑦
– ∅ is minimal in SUBSETS (its unique minimum);       

universe is maximal (its unique maximum). 
– All primes are minimal in DIVISORS, and there are no 

maximal elements. 
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Well-ordering principle

• Theorem: Any non-empty subset of natural 
numbers contains the least element 
– With respect to the usual total order 𝑥 ≤ 𝑦

• There is smallest positive even number. Smallest 
composite number. Smallest square… 

– In general, if there is a property which is not true 
for some natural numbers, there is a smallest 
natural number for which it is not true. 

– Very useful for proofs! 
• We saw it in the proof that there are infinitely many 
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Puzzle:  coins 

• A not-too-far-away country recently got rid of 
a penny coin,  and now everything needs to be 
rounded to the nearest multiple of 5 cents…  

– Suppose that instead of just dropping the penny, 
they would introduce a 3 cent coin.

• Like British three pence.   

– What is the largest amount that cannot be paid by 
using only existing coins (5, 10, 25) and a 3c coin? 

7c
Any number n >7 can be paid with 3,5,10,25 coins (even just 3 and 5). 



Well-ordering principle

• Any non-empty subset of natural numbers contains the least element 
– With respect to the usual total order 𝑥 ≤ 𝑦
– Very useful for proofs! 

• Coins:  ∀𝑥 ∈ ℕ, if x >7 then ∃ 𝑦, 𝑧 ∈ ℕ such that x = 3y+5z.   So any amount 
>7 can be paid with 3s and 5s. 
– Suppose, for the sake of contradiction, that there are  amounts greater than 7 

which cannot be paid with 3s and 5s. 
– Take a set S of all such amounts. Since 𝑆 ⊆ ℕ, and we assumed that 𝑆 ≠ ∅, by 

well-ordering principle  S has the least element. Call it n. 
– Now, look at n-3; it cannot be paid by 3s and 5s either.  
– Since n is the least element of S,  𝑛 − 3 ≤ 7 < 𝑛
– 3  cases: 

• n-3 = 7. Then  n=10=2*5.   
• n-3 = 6. Then  n=9=3*3 
• n-3 = 5.  Then n=8=3+5.   

– In all three cases, got a contradiction. 
– Therefore,  for every 𝑥 ∈ ℕ, if  x >7 then x=3y+5z for  some 𝑦, 𝑧 ∈ ℕ.    



Sums, products and sequences

• How to write long sums, e.g., 1+2+… (n-1)+n concisely? 
– Sum notation (“sum from 1 to n”):  σ𝑖=1

𝑛 𝑖 = 1 + 2 + …+ 𝑛
• If n=3, σ𝑖=1

3 𝑖 = 1+2+3=6.  
• The name “𝑖“ does not matter. Could use another letter not yet in use.

• In general, let  𝑓: ℤ → ℝ, 𝑚, 𝑛 ∈ ℤ,𝑚 ≤ 𝑛.
– σ𝑖=𝑚

𝑛 𝑓(𝑖) = 𝑓 𝑚 + 𝑓 𝑚 + 1 +⋯+ 𝑓 𝑛
• If m=n, σ𝑖=𝑚

𝑛 𝑓(𝑖) =f(m)=f(n). 
• If n=m+1, σ𝑖=𝑚

𝑛 𝑓(𝑖) = f(m)+f(m+1) 

• If n>m,   σ𝑖=𝑚
𝑛 𝑓(𝑖) = (σ𝑖=𝑚

𝑛−1 𝑓(𝑖)) + 𝑓(𝑛)

• Example: 𝑓 𝑥 = 𝑥2.   22 + 32 + 42 = σ𝑖=2
4 𝑖2 = 29

• Similarly for product notation (product from m to n): 
– Π𝑖=𝑚

𝑛 𝑓 𝑖 = 𝑓 𝑚 ⋅ 𝑓 𝑚 + 1 ⋅ … ⋅ 𝑓 𝑛 = (Π𝑖=𝑚
𝑛−1 𝑓 𝑖 ) ⋅ 𝑓(𝑛)

– For  𝑓 𝑥 = 𝑥,  2 ⋅ 3 ⋅ 4 = Π𝑖=2
4 𝑖 = 24

– 1 ⋅ 2 ⋅ … ⋅ 𝑛 = Π𝑖=1
𝑛 𝑖 = 𝑛! (n factorial)



Sum of numbers formula

• Claim: for any n∈ ℕ, σ𝑖=0
𝑛 𝑖 =

𝑛 𝑛+1

2
• Proof. 

– Suppose not.  

– Let S be a set of all numbers n’ such that σ𝑖=0
𝑛′ 𝑖 ≠

𝑛′ 𝑛′+1

2
.  By well-

ordering principle, if 𝑆 ≠ ∅, then  there is the least number k in S. 

– Case 1:  k=0.  But σ𝑖=0
0 𝑖 = 0 =

0 0+1

2
. So formula works for k=0.  

– Case 2:  k>0.  Then  𝑘 − 1 ≥ 0.
• So  σ𝑖=0

𝑘 𝑖 = (σ𝑖=0
𝑘−1 𝑖) +k.  

• As k is the smallest bad number, the formula works for k-1.  

• So σ𝑖=0
𝑘−1 𝑖 =

k−1 k

2

• Now, σ𝑖=0
𝑘 𝑖 = (σ𝑖=0

𝑘−1 𝑖) +k = 
k−1 k

2
+ k =

k2−k+2k

2
=

k2+𝑘

2
=

𝑘(𝑘+1)

2
• So the formula works for k>0, too.  

– Contradiction. So S is empty, thus the formula works for all 𝑛 ∈ ℕ.

Gauss’ proof:  
1     +  2   +  … + 99  + 100 +
100 + 99  + … +  2    + 1     = 
101 + 101+ … +101 + 101 =100*101

So 1+2+ … + 99 + 100 =
100∗101

2

Works for any n, not just n=100 
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