COMP 1002

Logic for Computer Scientists

Lecture 21
Admin stuff

• Assignment 4 is posted
 – Due Tuesday, March 12
Partial and total orders

• A binary relation $R \subseteq A \times A$ is an order if R is
 – Reflexive $\forall x \in A \ R(x, x)$
 – Anti-symmetric $\forall x, y \in A \ R(x, y) \land R(y, x) \rightarrow x = y$
 – Transitive $\forall x, y, z \in A \ R(x, y) \land R(y, z) \rightarrow R(x, z)$

• R is a total order if $\forall x, y \in A \ R(x, y) \lor R(y, x)$
 • That is, every two elements of A are related.
 • E.g. $R_1 = \{(x, y)|x, y \in \mathbb{Z} \land x \leq y\}$ is a total order.
 • So is alphabetical order of English words.
 • But not $R_2 = \{(x, y)|x, y \in \mathbb{Z} \land x < y\}$
 – not reflexive, so not an order.

• Otherwise, R is a partial order.
 • $\text{SUBSETS} = \{(A, B) | A, B \text{ are sets } \land A \subseteq B \}$ is a partial order.
 – Reflexive: $\forall A, \ A \subseteq A$
 – Anti-symmetric: $\forall A, B \ A \subseteq B \land B \subseteq A \rightarrow A = B$
 – Transitive: $\forall A, B, C \ A \subseteq B \land B \subseteq C \rightarrow A \subseteq C$
 – Not total: if $A = \{1,2\}$ and $B = \{1,3\}$, then neither $A \subseteq B$ nor $B \subseteq A$
 • $\text{DIVISORS} = \{(x,y)| x, y \in \mathbb{N} \land x, y \geq 2 \land \exists z \in \mathbb{N} \ y = z \cdot x\}$ is a partial order.
Partial and total orders

• A binary relation \(R \subseteq A \times A \) is an order if \(R \) is
 – Reflexive, Anti-symmetric, Transitive
 – \(R \) is a total order if \(\forall x, y \in A \ R(x, y) \vee R(y, x) \)
 • \(R_1 = \{(x, y) | x, y \in \mathbb{Z} \land x \leq y\} \) is a total order.
 • So is alphabetical order of English words.
 – Otherwise, \(R \) is a partial order.
 • \(SUBSETS = \{(A, B) \mid A, B \text{ are sets} \land A \subseteq B \} \)
 • \(DIVISORS = \{(x, y) \mid x, y \in \mathbb{N} \land x, y \geq 2 \land \exists z \in \mathbb{N} \ y = z \cdot x\} \)
• An order may have minimal and maximal elements (maybe multiple)
 – \(x \in A \) is minimal in \(R \) if \(\forall y \in A \ y \neq x \rightarrow \neg R(y, x) \)
 and maximal if \(\forall y \in A \ y \neq x \rightarrow \neg R(x, y) \)
 – \(\emptyset \) is minimal in \(SUBSETS \) (its unique minimum);
 universe is maximal (its unique maximum).
 – All primes are minimal in \(DIVISORS \), and there are no maximal elements.
Well-ordering principle

- **Theorem**: Any non-empty subset of natural numbers contains the least element
 - With respect to the usual total order $x \leq y$
 - There is smallest positive even number. Smallest composite number. Smallest square...
 - In general, if there is a property which is not true for some natural numbers, there is a smallest natural number for which it is not true.
 - Very useful for proofs!
 - We saw it in the proof that there are infinitely many primes
Puzzle: coins

- A not-too-far-away country recently got rid of a penny coin, and now everything needs to be rounded to the nearest multiple of 5 cents...
 - Suppose that instead of just dropping the penny, they would introduce a 3 cent coin.
 - Like British three pence.
 - What is the largest amount that cannot be paid by using only existing coins (5, 10, 25) and a 3c coin?

7c
Any number n > 7 can be paid with 3, 5, 10, 25 coins (even just 3 and 5).
Well-ordering principle

- Any non-empty subset of natural numbers contains the least element
 - With respect to the usual total order $x \leq y$
 - Very useful for proofs!
- Coins: $\forall x \in \mathbb{N},$ if $x > 7$ then $\exists y, z \in \mathbb{N}$ such that $x = 3y + 5z$. So any amount > 7 can be paid with 3s and 5s.
 - Suppose, for the sake of contradiction, that there are amounts greater than 7 which cannot be paid with 3s and 5s.
 - Take a set S of all such amounts. Since $S \subseteq \mathbb{N},$ and we assumed that $S \neq \emptyset,$ by well-ordering principle S has the least element. Call it n.
 - Now, look at $n - 3$; it cannot be paid by 3s and 5s either.
 - Since n is the least element of $S,$ $n - 3 \leq 7 < n$
 - 3 cases:
 - $n - 3 = 7.$ Then $n = 10 = 2 \times 5.$
 - $n - 3 = 6.$ Then $n = 9 = 3 \times 3$
 - $n - 3 = 5.$ Then $n = 8 = 3 + 5.$
 - In all three cases, got a contradiction.
 - Therefore, for every $x \in \mathbb{N},$ if $x > 7$ then $x = 3y + 5z$ for some $y, z \in \mathbb{N}.$
Sums, products and sequences

• How to write long sums, e.g., 1+2+... (n-1)+n concisely?
 – Sum notation (“sum from 1 to n”): \(\sum_{i=1}^{n} i = 1 + 2 + \ldots + n \)
 • If n=3, \(\sum_{i=1}^{3} i = 1+2+3=6. \)
 • The name “i“ does not matter. Could use another letter not yet in use.

• In general, let \(f: \mathbb{Z} \rightarrow \mathbb{R}, \ m, n \in \mathbb{Z}, m \leq n. \)
 – \(\sum_{i=m}^{n} f(i) = f(m) + f(m+1) + \ldots + f(n) \)
 • If m=n, \(\sum_{i=m}^{n} f(i) = f(m)=f(n). \)
 • If n=m+1, \(\sum_{i=m}^{n} f(i) = f(m)+f(m+1) \)
 • If n>m, \(\sum_{i=m}^{n} f(i) = (\sum_{i=m}^{n-1} f(i)) + f(n) \)
 • Example: \(f(x) = x^2. \) \(2^2 + 3^2 + 4^2 = \sum_{i=2}^{4} i^2 = 29 \)

• Similarly for product notation (product from m to n):
 – \(\prod_{i=m}^{n} f(i) = f(m) \cdot f(m+1) \cdot \ldots \cdot f(n) = (\prod_{i=m}^{n-1} f(i)) \cdot f(n) \)
 – For \(f(x) = x, \) \(2 \cdot 3 \cdot 4 = \prod_{i=2}^{4} i = 24 \)
 – \(1 \cdot 2 \cdot \ldots \cdot n = \prod_{i=1}^{n} i = n! \) (n factorial)
Sum of numbers formula

- Claim: for any $n \in \mathbb{N}$, $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$

- Proof.
 - Suppose not.
 - Let S be a set of all numbers n' such that $\sum_{i=0}^{n'} i \neq \frac{n'(n'+1)}{2}$. By well-ordering principle, if $S \neq \emptyset$, then there is the least number k in S.
 - Case 1: $k=0$. But $\sum_{i=0}^{0} i = 0 = \frac{0(0+1)}{2}$. So formula works for $k=0$.
 - Case 2: $k>0$. Then $k - 1 \geq 0$.
 - So $\sum_{i=0}^{k-1} i = (\sum_{i=0}^{k-1} i) + k$.
 - As k is the smallest bad number, the formula works for $k-1$.
 - So $\sum_{i=0}^{k-1} i = \frac{(k-1)k}{2}$
 - Now, $\sum_{i=0}^{k} i = (\sum_{i=0}^{k-1} i) + k = \frac{(k-1)k}{2} + k = \frac{k^2-k+2k}{2} = \frac{k^2+k}{2} = \frac{k(k+1)}{2}$
 - So the formula works for $k>0$, too.
 - Contradiction. So S is empty, thus the formula works for all $n \in \mathbb{N}$.

Gauss' proof:

1 + 2 + ... + 99 + 100 + 100 + 99 + ... + 2 + 1 = 101 + 101 + ... + 101 + 101 = 100*101

So 1+2+ ... + 99 + 100 = $\frac{100*101}{2}$

Works for any n, not just $n=100$
Sum of numbers formula

• Claim: for any \(n \in \mathbb{N} \), \(\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \)

• Proof.
 – Suppose not.
 – Let \(S \) be a set of all numbers \(n' \) such that \(\sum_{i=0}^{n'} i \neq \frac{n'(n'+1)}{2} \). By well-ordering principle, if \(S \neq \emptyset \), then there is the least number \(k \) in \(S \).

 – Case 1: \(k=0 \). But \(\sum_{i=0}^{0} i = 0 = \frac{0(0+1)}{2} \). So formula works for \(k=0 \).

 – Case 2: \(k>0 \). Then \(k - 1 \geq 0 \).
 • So \(\sum_{i=0}^{k} i = (\sum_{i=0}^{k-1} i) + k \).
 • As \(k \) is the smallest bad number, the formula works for \(k-1 \).
 • So \(\sum_{i=0}^{k-1} i = \frac{(k-1)k}{2} \).
 • Now, \(\sum_{i=0}^{k} i = (\sum_{i=0}^{k-1} i) + k = \frac{(k-1)k}{2} + k = \frac{k^2-k+2k}{2} = \frac{k^2+k}{2} = \frac{k(k+1)}{2} \).
 • So the formula works for \(k>0 \), too.
 – Contradiction. So \(S \) is empty, thus the formula works for all \(n \in \mathbb{N} \).

Gauss' proof:

\[
1 + 2 + \ldots + 99 + 100 + 100 + 99 + \ldots + 2 + 1 = 101 + 101 + \ldots + 101 + 101 = 100 \times 101
\]

So \(1+2+\ldots+99+100 = \frac{100 \times 101}{2} \)

Works for any \(n \), not just \(n=100 \).