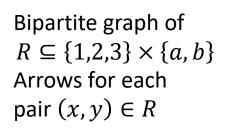


COMP 1002

Logic for Computer Scientists

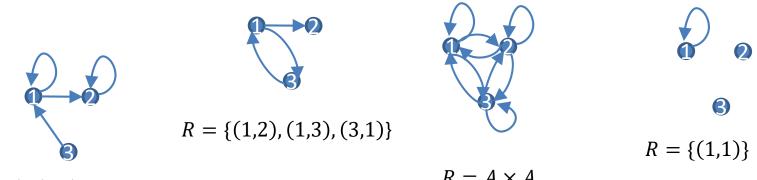
Lecture 20

- A relation is a subset of a Cartesian product of sets.
 - If of two sets (set of pairs), call it a **binary** relation.
 - Of 3 sets (set of triples), ternary. Of k sets (set of tuples), k-ary
 - A={1,2,3}, B={a,b}
 - $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$
 - R = {(1,a), (2,b),(3,a), (3,b)} is a relation. So is R={(1,b)}.
 - A={1,2},
 - $A \times A = \{(1,1), (1,2), (2,1), (2,2)\}$
 - R={(1,1), (2,2)} (all pairs (x,y) where x=y)
 - $R=\{(1,1),(1,2),(2,2)\}$ (all pairs (x,y) where $x \le y$).
 - A=PEOPLE
 - COUPLES ={(x,y) | Loves(x,y)}
 - PARENTS ={(x,y) | Parent(x,y)}
 - A=PEOPLE, B=DOGS, C=PLACES
 - WALKS = {(x,y,z) | x walks y in z}
 - Jane walks Buddy in Bannerman park.



Graphs of binary relations

- A (directed) graph (digraph) of a binary relation $R \subseteq A \times A$ is a diagram consisting of
 - A points, with a point (often drawn as a circle with a label, called a vertex or a node) for each element of A
 - An arrow (called an edge, an arc or a link) from point x to point y for each $(x, y) \in R$
 - We draw a loop with an arrow for each $x \in A$ such that $(x, x) \in R$
- Let $A = \{1, 2, 3\}$



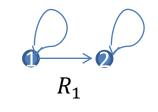
 $R = \{(1,1), (1,2), (2,2), (3,1)\}$

 $R = A \times A$

This is a different graph than plotting a function on plane!

Reflexive relations

- A binary relation $R \subseteq A \times A$ is
 - **Reflexive** if $\forall x \in A, R(x, x)$
 - Every x is related to itself.
 - So on the graph, every vertex has a loop
 - E.g. A={1,2}, $R_1 = \{ (1,1), (2,2), (1,2) \}$
 - On A = \mathbb{Z} , $\mathbb{R}_2 = \{(x, y) | x = y\}$ is reflexive
 - But not $R_3 = \{(x, y) | x < y\}$



 R_2

Anti-reflexive relations

- A binary relation $R \subseteq A \times A$ is
 - **Anti-reflexive** if $\forall x \in A, \neg R(x, x)$

 $R_6 = \{(1,2)\}$

- Graph of R has no loops.
- E.g. A={1,2}, $R_6 = \{(1,2)\}$
 - but not $R_1 = \{ (1,1), (2,2), (1,2) \}$ (reflexive)
 - nor $R_7 = \{(1,1), (1,2)\}$ (neither)
- For $A = \mathbb{Z}$, not $R_2 = \{(x, y) | x = y\}$ - Nor $R_4 = \{(x, y) | x \equiv y \mod 3\}$
- But $R_3 = \{(x, y) | x < y\}$ is anti-reflexive.
 - So are $R_5 = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x + 1 = y\}$
 - And PARENT = { $(x, y) \in PEOPLE \times PEOPLE | x \text{ is a parent of } y$ }

A relation R can be neither reflexive nor anti-reflexive.

 R_{R}

 R_1

Symmetric and anti-symmetric relations

- A binary relation $R \subseteq A \times A$ is
 - Symmetric iff $\forall x, y \in A, (x, y) \in R \leftrightarrow (y, x) \in R$
 - For every arrow (except loops) another goes the opposite way
 - R_1 and R_3 above are not symmetric. R_2 is.
 - $R_8 = \{(1,2), (2,1), (1,1)\}$ is symmetric
 - A = \mathbb{Z} , $R_4 = \{(x, y) | x \equiv y \mod 3\}$ is symmetric.

- Anti-symmetric iff $\forall x, y \in A, (x, y) \in R \land (y, x) \in R \rightarrow x = y$

- For every arrow, there is no arrow the other way. Loops OK.
- $R_1, R_3, R_5, R_6, R_7, PARENT$ are anti-symmetric.
- *R*₄ is not.
- R₂ is both symmetric and anti-symmetric.
- $R_8 = \{(1,2), (2,1), (1,3)\}$ is neither symmetric nor anti-symmetric.

Transitive relations

• A binary relation $R \subseteq A \times A$ is **transitive** if

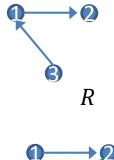
 $\forall x, y, z \in A, \ (x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R$

- In the graph of R, if there is a way to get from x to z by following a sequence of edges (arrows), then there is a way to get from x to z in one step.
- R_1, R_2, R_3, R_4 are all transitive.
- $R_5 = \{(x, y) | x, y \in \mathbb{Z} \land x + 1 = y\}$ is not transitive.
- PARENT = { $(x, y) | x, y \in PEOPLE \land x \text{ is a parent of } y$ } is not.
- A transitive closure of a relation R is the relation

$$R^* = \{(x, z) | \exists k \in \mathbb{N} \ \exists y_0, \dots, y_k \in A \\ (x = y_0 \land z = y_k \land \forall i \in \{0, \dots, k-1\} R(y_i, y_{i+1})\}$$

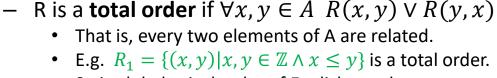
- That is, the graph of R^* has all vertices and edges of R, plus a direct arrow x to z whenever there is a way in the graph of R to get from x to z following a sequence of arrows.
- If $R = \{(3,1), (1,2)\}$, then there is a way in R to get from 3 to 2 via 1, so in R* there is a direct arrow from 3 to 2.

• So the transitive closure of $\{(3,1),(1,2)\}$ is $R^* = \{(3,1), (1,2), (3,2)\}$



Equivalence

- A binary relation R ⊆ A × A is an equivalence if R is reflexive, symmetric and transitive.
 - E.g. A={1,2}, $R = \{(1,1), (2,2)\}$ or $R = A \times A$
 - Not $R_1 = \{ (1,1), (2,2), (1,2) \}$ nor $R_3 = \{ (x,y) | x < y \}$
 - On A = \mathbb{Z} , $R_2 = \{(x, y) | x = y\}$ is an equivalence
 - So is $R_4 = \{(x, y) | x \equiv y \mod 3 \}$
 - Reflexive: $\forall x \in \mathbb{Z}, x \equiv x \mod 3$
 - − Symmetric: $\forall x, y \in \mathbb{Z}$, $x \equiv y \mod 3 \rightarrow y \equiv x \mod 3$
 - Transitive: $\forall x, y, z \in \mathbb{Z}, x \equiv y \mod 3 \land y \equiv z \mod 3 \rightarrow x \equiv z \mod 3$
- An equivalence relation partitions A into equivalence classes:
 - Intersection of any two equivalence classes is Ø
 - Union of all equivalence classes is A.
 - $\begin{array}{l} \ R_4 : \ \mathbb{Z} = \{x \mid x \equiv 0 \ mod \ 3\} \cup \{x \mid x \equiv 1 \ mod \ 3\} \cup \{x \mid x \equiv 2 \ mod \ 3\} \end{array}$
 - $R = A \times A$ gives rise to a single equivalence class. $R = \{(1,1), (2,2)\}$ on A = $\{1,2\}$ to two equivalence classes.



- So is alphabetical order of English words.
- But not $R_2 = \{(x, y) | x, y \in \mathbb{Z} \land x < y\}$
 - not reflexive, so not an order.
- Otherwise, R is a **partial order**.

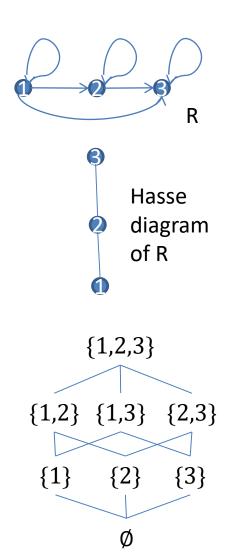
transitive.

- $SUBSETS = \{(A, B) \mid A, B \text{ are sets } \land A \subseteq B \}$ is a partial order.
 - Reflexive: $\forall A, A \subseteq A$
 - Anti-symmetric: $\forall A, B \ A \subseteq B \land B \subseteq A \rightarrow A = B$
 - Transitive: $\forall A, B, C \ A \subseteq B \land B \subseteq C \rightarrow A \subseteq C$
 - Not total: if A ={1,2} and B ={1,3}, then neither $A \subseteq B$ nor $B \subseteq A$
- $DIVISORS = \{(x,y) \mid x, y \in \mathbb{N} \land x, y \ge 2 \land \exists z \in \mathbb{N} \ y = z \cdot x\}$ is a partial order.
- PARENT is not an order. But ANCESTOR would be, if defined so that each person is an ancestor of themselves. It is a partial order.
- An order may have **minimal** and **maximal** elements (maybe multiple)
 - $-x \in A$ is minimal in R if $\forall y \in A \ y \neq x \rightarrow \neg R(y, x)$
 - and maximal if $\forall y \in A \ y \neq x \rightarrow \neg R(x, y)$
 - Ø is minimal in SUBSETS (its unique minimum); universe is maximal (its unique maximum).
 - All primes are minimal in DIVISORS, and there are no maximal elements.

A binary relation $R \subseteq A \times A$ is an **order** if R is reflexive, anti-symmetric and

Hasse diagram

- A Hasse diagram is a way to draw a (partial or total) order (more precisely, its "transitive reduction": opposite of transitive closure) without drawing loops or edges that have to be there by transitivity or reflexivity.
 - draw minimal elements on the bottom, and then go up
 - don't draw arrowheads (assumed arrow direction is always upwards).
 - $\mathsf{R}=\{(x, y) \in \{1, 2, 3\} \times \{1, 2, 3\} | x \le y\}$
 - On the Hasse diagram of R, only draw edges (1,2) and (2,3), as all the rest follow by reflexivity and transitivity. 1 is the minimal (bottom), 3 maximal (top).
 - $SUBSETS = \{(A, B) \mid A, B \text{ are sets } \land A \subseteq B \}$
 - Let universe be {1,2,3}
 - Hasse diagram of SUBSETS over {1,2,3}:



Tower of Hanoi game

- Rules of the game:
 - Start with all disks on the first peg.
 - At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.
 - Goal: move the whole tower onto the second peg.
- Question: how many steps are needed to move the tower of 8 disks? How about n disks?