

COMP 1002

Intro to Logic for Computer Scientists

Lecture 2

Language of logic: building blocks

- **Proposition**: A sentence that can be *true* or *false*.
 - A: "It is raining in St. John's right now".
 - B: "2+2=7"
 - But not "Hi!" or "what is x?"
- Propositional variables:
 - A, B, C (or p, q, r)
 - It is a shorthand to denote propositions:
 - "B is true", for the B above, means "2+2=7" is true.

Language of logic: connectives

Pronunciation	Notation	Meaning
Not A (negation)	¬ A	Opposite of A is true, $\neg A$ is true when A is false
A and B (conjunction)	ΑΛΒ	True if both A and B are true
A or B (disjunction)	AVB	True if either A or B are true (or both)
If A then B (implication)	$A \rightarrow B$	True whenever if A is true, then B is also true

- Let A be "It is sunny" and B be "it is cold"
 - ¬ A: It is not sunny
 - $A \wedge B$: It is sunny and cold
 - A V B: It is either sunny or cold
 - $A \rightarrow B$: If it is sunny, then it is cold
- Can build longer formulas by combining smaller formulas using connectives.
 - And parentheses: will see later when can remove them.

Longer formulas

- Let
 - A be "It is sunny", 🐫
 - B be "it is cold",

- C be "It's snowing"
- What are the translations of: IF (🥰 AND 👯)
 - $(B \land C) \rightarrow (\neg A)$
 - If it is cold and snowing, then it is not sunny
 - IF 🥰 THEN (OR 🍋 • $B \rightarrow (C \lor A)$
 - If it is cold, then it is either snowing or sunny
 - IF(NOT 🔶 AND 🔅) THEN • $((\neg A) \land A) \rightarrow C$
 - If it is sunny and not sunny, then it is snowing.

Pronunciation	Notation	True when
A and B	А∕∖В	Both A and B must be true
A or B	A ∖/ B	Either A or B must be true (or both)
If A then B	A -> B	if A is true, then B is also true
Not A	~A	Opposite of A is true

THEN NOT

The truth

- We talk about a sentence being true or false when the values of the variables are known.
 - If we didn't know whether it is sunny, or whether it is cold, then we would not know whether A \land B is true or false.
- **Truth assignment:** setting values of all propositional variables to true or false.
 - It is sunny, it is not cold, it is snowing
 - A=true 🤅, B=false 💥, C= true 🛛
- **Satisfying assignment** for a sentence: assignment that makes it true.
 - (Otherwise, **falsifying** assignment).
 - A=true, B=true satisfies A \land B
 - A=true, B=false falsifies $A \land B$

"if ... then" in logic

• Last class' puzzle has a logical structure:

"if A then B"

- What circumstances make this true?
 - A is true and B is true
 - A is true and B is false
 - A is false and B is true
 - A is false and B is false

Truth tables

Α	В	not A	A and B	A or B	if A then B
True	True	False	True	True	True
True	False	False	False	True	False
False	True	True	False	True	True
False	False	True	False	False	True

Α	В
True	True
True	False
False	True
False	False

- Let
 - A be "It is sunny"

B be "it is cold"

- When it is true that it is sunny and true that it is cold, it is true that it is either sunny or cold.
 - When A is true, B is true, then $A \lor B$ is true
- When it is true that it is sunny, but false that it is cold, then "it is both sunny and cold" is false.
 - When A is true, B is false, then $A \wedge B$ is false.

Order of precedence

- Combine to make longer formulas
- In arithmetic:

Pronunciation	Notation	True when
Not A	¬ A	Opposite of A is true
A and B	АЛВ	Both A and B must be true
A or B	AVB	Either A or B must be true (or both)
If A then B	$A \to B$	if A is true, then B is also true

- 6 + -5 * 7 + 8 = (6 + ((-5) * x)) + 8
 - First negate 5, then multiply -5 and x, then add this to 6, add result to 8.
 - Order: unary -, then *, then +.
- In logic formulas
 - 1. Negation (\neg) first: like unary minus
 - 2. then AND (Λ): like times (*)
 - 3. then OR (V): like plus (+)
 - 4. Only then "if ... then" (\rightarrow)
 - 5. Parentheses as in arithmetic formulas

$$A \land \neg B \lor \neg (C \to A) \to A \text{ is } ((A \land (\neg B)) \lor (\neg (C \to A))) \to A$$

- Make sure to keep track of parentheses!!!
 - $A \lor B \land C$ is not the same as $(A \lor B) \land C$, just like $2 + 3 * 4 \neq (2 + 3) * 4$
 - Check the scenario when A is true, but both B and C are false.

Contractor Contractor

Parse trees

- Order of precedence in arithmetic:
 - First unary minus (-), then multiplication (*), then addition (+)
- Parse tree: a way to visualize the order of precedence
 - The last operation on top
 - The numbers/variables on the bottom.
 - Branch points (nodes) marked by arithmetic operations.
 - To compute a value at a branch point (node), compute all values below it.

4*6+(-5+x)*8=(4*6)+(((-5)+x)*8)

Parse trees in logic formulas

• Precedence:

- − ¬ first, then \land , then \lor , → last
- \neg is like a unary minus, \land like * and \lor like +
- Parse tree: a way to visualize the order
 - The last operation on top
 - Variables on the bottom.
 - Branch points marked by connectives.
 - $A \land \neg B \lor \neg C \to A$ - Which is $((A \land (\neg B)) \lor (\neg C)) \to A$
- $A \lor B \land C \text{ is } A \lor (B \land C)$
 - which is different from $(A \lor B) \land C$

 $A \wedge \neg B \vee \neg C \rightarrow A$

Evaluating logic formulas

- Precedence:
 - − ¬ first, then Λ , then V, → last
 - ¬ is like a unary minus, ∧ like * and ∨ like +
- Like in arithmetic:
 - evaluate bottom-up,
 - Start with variables, then go up the tree computing the value of each node.
- Example:
 - Let A be false, B be true and C be false.
 - Evaluate $A \land \neg B \lor \neg C \rightarrow A$

• (which is
$$((A \land (\neg B)) \lor (\neg C)) \rightarrow A)$$

Pronunciation	Notation	True when
Not A	¬ A	Opposite of A is true
A and B	ΑΛΒ	Both A and B must be true
A or B	AVB	Either A or B must be true (or both)
If A then B	$A \to B$	if A is true, then B is also true

- 1. $\neg B$ is false
 - Negation of true is false
- 2. $A \land (\neg B)$ is false
 - False and true is false
- *3.* $\neg C$ is true
- 4. $(A \land (\neg B)) \lor (\neg C)$ is true
 - "False or true" is true
- 5. $(A \land (\neg B)) \lor (\neg C) \rightarrow A$ is false
 - "If G then H" is false when G is true and H is false

Truth tables for longer formulas

- Longer formulas
 - List all possible combinations of assigning TRUE/FALSE to all variables.
 - For each of them, find the value of the whole formula by evaluating bottom-up like in arithmetic
 - Use the parse tree.
- Example: $(\neg A) \lor B$
 - Notice: its truth table's last column is the same as for A → B
 - So $(\neg A) \lor B$ and $A \to B$
 - are equivalent.

Α	В	Not A	(Not A) or B
True	True	False	True
True	False	False	False
False	True	True	True
False	False	True	True

Knights and knaves

 On a mystical island, there are two kinds of people: knights and knaves.

Knights always tell the truth.

• Knaves always lie.

Raymond Smullyan

 On a mystical island, there are two kinds of people: knights and knaves. Knights always tell the truth. Knaves always lie.

- Puzzle 1: You meet two people on the island, Arnold and Bob. Arnold says "Either I am a knave, or Bob is a knight".
 - Is Arnold a knight or a knave?
 - What about Bob?