COMP 1002

Logic for Computer Scientists

Lecture 19
Puzzle: the barber club

• In a certain barber’s club,
 – Every member has shaved at least one other member
 – No member shaved himself
 – No member has been shaved by more than one member
 – There is a member who has never been shaved.

• **Question: how many barbers are in this club?**

 Infinitely many!
 Barber 0 grows a beard.
 For all $n \in \mathbb{N}$, barber n shaves barber $n+1$
Cardinalities of infinite sets

• Two finite sets A and B have the same \textit{cardinality} (size) if they have the same number of elements
 – That is, for each element of A there is exactly one matching element of B.

• For infinite A and B, define $|A|=|B|$ iff there exists a bijection between A and B.
 – If there is both a one-to-one function from A to B, and an onto function from A to B.
Countable sets

• An infinite set A is countable iff $|A| = |\mathbb{N}|$.
 – \mathbb{Z} is countable: take $f: \mathbb{Z} \to \mathbb{N}$, $f(x) = 2x$ if $x \geq 0$, else $f(x) = -(1 + 2x)$
 – Set of all finite strings over $\{0,1\}$, denoted $\{0,1\}^*$, is countable.
 • Empty string, 0, 1, 00, 01, 10, 11, 000, 001, ...

• An infinite subset of a countable language is countable.
 – A Cartesian product of countable languages is countable:
 • $\mathbb{N} \times \mathbb{N}$: $(0,0), (0,1), (1,0), (2,0), (1,1), (0,2), (3,0), (2,1), (1,2), ...$
 • So $\mathbb{Z} \times \mathbb{Z}$ is countable too.
 – Therefore, \mathbb{Q} is countable: $\mathbb{Q} \subset \mathbb{Z} \times \mathbb{Z}$
Is there a bigger infinity?

- Yes! In particular, \mathbb{R} is uncountable. Even $[0,1)$ interval of the real line is uncountable!
 - Reals may have infinite strings of digits after the decimal point.
 - Imagine if there were a numbered list of all reals in $[0,1)$
 - $a_0, a_1, a_2, a_3, ...$
 - For example:
 - $a_1 = 0.23145...$
 - $a_2 = 0.30000...$
 - ...
 - Let number d be:
 - $d[i] = (a_i[i] + 1) \mod 10$
 - Here, $[i]$ is i^{th} digit.
 - This d is a valid real number!

- But if number d were in the list, e.g. k^{th}, a contradiction
 - It would have to differ from itself in k^{th} place.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>...</td>
<td>5</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>6</td>
</tr>
</tbody>
</table>
Diagonalization: languages

• An alphabet is a finite set of symbols.
 – For example, \{0,1\} is the binary alphabet.

• A language is a set of finite strings over a given alphabet.
 – For example, \{0,1\}^* is the set of all finite binary strings.
 – PRIMES \subseteq \{0,1\}^* is all strings coding prime numbers in binary.
 – PYTHON \subseteq \{0,1\}^* is all strings coding valid Python programs in binary.

• Every language is countable.
 – \{0,1\}^*, PRIMES, PYTHON are countable

• Set of all languages is uncountable.
 – Put “yes” if \(s \in L\), “no” if \(s \not\in L\)
 – Let language D be:
 • \(s \in D\) iff \(s \not\in L_s\)
 – If D were in the list, e.g. as \(L_k\), a contradiction
 • It would have to differ from itself in \(k^{th}\) place.

• So there is a language for which there is no Python program which would correctly print “yes” on strings in the language, and “no” otherwise.

• In general, for any set A, finite or infinite, its powerset \(P(A)\) is larger than A: that is, \(|A| < P(A)|\)
• A specific example of a problem not solvable by any program: the **Halting problem**, invented by Alan Turing:
 – Input:
 • Prog: A program as piece of code (e.g., in Python):
 • x: Input to that program.
 – Output:
 • “yes” if this Prog(x) stops (that is, program Prog stops on input x).
 • “no” if Prog goes into an infinite loop on input x.
 – Suppose there is a program Halt(Prog, x) which always stops and prints “yes” or “no” correctly.
 • Nothing wrong with giving a piece of code as an input to another program.
 – Then there is a program HaltOnItself(Prog) = Halt(Prog,Prog)
 – And a program Diag(Prog):
 • if Halt(Prog, Prog) says “yes”, go into infinite loop (e.g. add “while 0 <1: “ to Halt’s code).
 • if Halt(Prog, Prog) says “no”, stop.
 – Now, what should Diag(Diag) do?...
 • Paradox! It is like a barber who shaves everybody who does not shave himself.
 • So the program Diag does not exist... Thus the program Halt does not exist!
• So there is no program that would always stop and give the right answer for the Halting problem.