

COMP 1002

Logic for Computer Scientists

Lecture 19

Puzzle: the barber club

- In a certain barber's club,
 - Every member has shaved at least one other member
 - No member shaved himself
 - No member has been shaved by more than one member
 - There is a member who has never been shaved.
- Question: how many barbers are in this club?
 Infinitely many!
 - Barber 0 grows a beard.
 - For all $n \in \mathbb{N}$, barber n shaves barber n+1

Cordinalities of infinite sets

- Two finite sets A and B have the same *cardinality* (size) if they have the same number of elements
 - That is, for each element of A there is exactly one matching element of B.
- For infinite A and B, define |A|=|B| iff there exists a bijection between A and B.
 - If there is both a one-to-one function from
 A to B, and an onto function from A to B.

Countable sets

- An infinite set A is countable iff |A| = |N|.
 - \mathbb{Z} is countable: take $f: \mathbb{Z} \to \mathbb{N}$, f(x) = 2x if $x \ge 0$, else f(x) = -(1+2x)
 - Set of all finite strings over {0,1}, denoted {0,1}*, is countable.
 - Empty string, 0, 1, 00, 01,10,11,000,001,...
- An infinite subset of a countable language is countable.
 - A Cartesian product of countable languages is countable:
 - $\mathbb{N} \times \mathbb{N}$: (0,0), (0,1), (1,0), (2,0), (1,1), (0,2), (3,0), (2,1), (1,2),...
 - So $\mathbb{Z} \times \mathbb{Z}$ is countable too.
 - Therefore, \mathbb{Q} is countable: $\mathbb{Q} \subset \mathbb{Z} \times \mathbb{Z}$

M

77.

Diagonalization: \mathbb{R}

- Is there a bigger infinity?
 - Yes! In particular, \mathbb{R} is uncountable. Even [0,1) interval of the real line is uncountable!
 - Reals may have infinite strings of digits after the decimal point.
 - Imagine if there were a numbered list of all reals in [0,1)
 - $a_0, a_1, a_2, a_3, \dots$
 - For example:
 - $a_1 = 0.23145...$
 - $a_2 = 0.30000...$

- .

- Let number d be:
 - $d[i]=(a_i[i]+1) \mod 10$
 - Here, [i] is i^{th} digit.
 - This d is a valid real number!
- But if number d were in the list, e.g. k^{th} , a contradiction
 - It would have to differ from itself in k^{th} place.

0.	r[1]	r[2]	r[3]	r[4]	r[5]	 r[k]	
a_0	2	3	1	4	5		
1	3	0	0	0	0		
2	9	9	9	9	9		
k	2	1	3	4	3	 5	
d	3	1	0			 6	

Diagonalization: languages

- An **alphabet** is a finite set of symbols.
 - For example, {0,1} is the binary alphabet.
- A language is a set of finite strings over a given alphabet.
 - For example, $\{0,1\}^*$ is the set of all finite binary strings.
 - − PRIMES \subset {0,1}^{*} is all strings coding prime numbers in binary.
 - − PYTHON $\subset \{0,1\}^*$ is all strings coding valid Python programs in binary.
- Every language is countable.
 - {0,1}*, PRIMES, PYTHON are countable
- Set of all languages is uncountable.
 - Put "yes" if $s \in L$, "no" if $s \notin L$
 - Let language D be:
 - $s \in D$ iff $s \notin L_s$
 - If D were in the list, e.g. as L_k , a contradiction
 - It would have to differ from itself in k^{th} place.
- So there is a language for which there is no Python program which would correctly print "yes" on strings in the language, and "no" otherwise.
- In general, for any set A, finite or infinite, its powerset P(A) is larger than A: that is, |A| < P(A)

•	U						
		0	1	00	01	 s _k	
L ₀	yes	yes	no	yes	yes		
L_1	yes	no	yes	no	yes		
	no	no	no	no	no		
L_k	no	yes	yes	no	yes	 yes	
D	no	yes	yes			 no	

Halting problem

- A specific example of a problem not solvable by any program: the **Halting** ۲ **problem,** invented by Alan Turing:
 - Input:
 - Prog: A program as piece of code (e.g., in Python):
 - x: Input to that program.
 - Output:
 - "yes" if this Prog(x) stops (that is, program Prog stops on input x).
 - "no" if Prog goes into an infinite loop on input x.
 - Suppose there is a program Halt(Prog, x) which always stops and prints "yes" or "no" correctly.
 - Nothing wrong with giving a piece of code as an input to another program.
 - Then there is a program HaltOnItself(Prog) = Halt(Prog, Prog)
 - And a program Diag(Prog):
 - if Halt(Prog, Prog) says "yes", go into infinite loop (e.g. add "while 0 <1: " to Halt's code).
 - if Halt(Prog, Prog) says "no", stop.
 - Now, what should Diag(Diag) do?...
 - Paradox! It is like a barber who shaves everybody who does not shave himself.
 - So the program Diag does not exist... Thus the program Halt does not exist!
- So there is no program that would always stop and give the right answer for the Halting problem.

