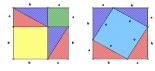


COMP 1002

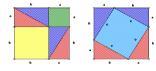
Logic for Computer Scientists

Lecture 16

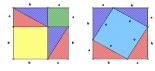


Proof by contradiction

- To prove $\forall x \ F(x)$, prove $\forall x \neg F(x) \rightarrow FALSE$
 - Universal instantiation: "let n be an arbitrary element of the domain S of ∀x "
 - Suppose that $\neg F(n)$ is true.
 - Derive a contradiction.
 - Conclude that F(n) is true.
 - By universal generalization, $\forall x F(x)$ is true.



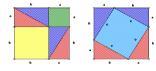
- Definition: A natural number is prime iff it is divisible only by 1 and itself. That is, n is prime iff
 ∀z ∈ N ((∃w ∈ N n = zw) → (z = 1 ∨ z = n))
- *Theorem*: There are infinitely many primes. $- \forall x \in \mathbb{N} Prime(x) \rightarrow \exists y \in \mathbb{N} y > x \land Prime(y)$
- Prime(x) is a shorthand for $\forall z \in \mathbb{N}(\exists w \in \mathbb{N} | x = zw) \rightarrow z = 1 \lor z = x$
- To say "infinitely many" we can write that no matter what element of the domain we take, there is always a larger one that has the property we are interested in (in this case, a prime).



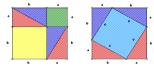
• *Theorem*: There are infinitely many primes.

 $- \forall x \in \mathbb{N} Prime(x) \rightarrow \exists y \in \mathbb{N} y > x \land Prime(y)$

- Proof:
 - Assume, for the sake of contradiction, that the statement of the theorem is false: that is,
 - $\exists x \in \mathbb{N}Prime(x) \land (\forall y \in \mathbb{N}y \le x \lor \neg Prime(y))$
 - Call this number n (universal instantiation of $\forall x$)
 - Now consider the number N = $(2 \cdot 3 \cdot ... \cdot n) + 1$
 - Now we have 2 cases.
 - Either N is a prime, in which case we are done since we found a prime larger than *n*, contradicting our assumption.
 - or *N* is not prime.



- *Theorem*: There are infinitely many primes. $- \forall x \in \mathbb{N} \ Prime(x) \rightarrow \exists y \in \mathbb{N} \ y > x \land Prime(y)$
- *Proof (continued)*:
 - Consider the number N = $(2 \cdot 3 \cdot ... \cdot n) + 1$
 - Case 2: suppose N is not prime, that is, for some $k, q \in \mathbb{N}$, N = kq, where $k \neq 1$ and $k \neq N$. Take smallest such k.
 - Since $N \equiv 1 \mod d$ for all $d \le n$, this k is not divisible by any $d \le n$, and k > n
 - So since k is the smallest factor of N, k itself must be prime.
 - Therefore, there exists a prime number k > n by existential instantiation.



• *Theorem*: There are infinitely many primes.

 $- \forall x \in \mathbb{N} Prime(x) \rightarrow \exists y \in \mathbb{N} y > x \land Prime(y)$

- *Proof (continued)*:
 - We showed that both cases of N being prime and not being prime give us $\exists y \in \mathbb{N} \ y > n \land Prime(y)$
 - In the first case, N itself was instantiation of ∃y, and in the second case, k was.
 - There are no more cases, so we showed that $\exists y \in \mathbb{N} \ y > n \land Prime(y)$, contradicting the assumption for an arbitrary n
 - Therefore, by universal generalization, the assumption is false, so $\forall x \in \mathbb{N} \ Prime(x) \rightarrow \exists y \in \mathbb{N} \ y > x \land Prime(y)$

□ (Done).

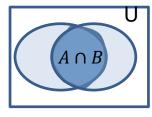
Puzzle: the barber

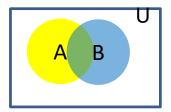
 In a certain village, there is a (male) barber who shaves all and only those men of the village who do not shave themselves.

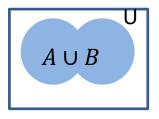
Question: who shaves the barber?

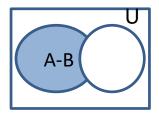
Venn diagrams of set operations

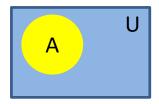
- Let A and B be two sets.
 - Such as A={1,2,3} and B={ 2,3,4}
- Intersection $A \cap B = \{ x \mid x \in A \land x \in B \}$
 - The green part of the picture above
 - $A \cap B = \{2,3\}$
- **Union** $A \cup B = \{ x \mid x \in A \lor x \in B \}$
 - The coloured part in the top picture.
 - $A \cup B = \{1, 2, 3, 4\}$
- **Difference** $A B = \{x \mid x \in A \land x \notin B\}$
 - The yellow part in the top picture.
 - $A B = \{1\}$
- Symmetric difference $A \Delta B = (A B) \cup (B A)$
 - The yellow and blue parts of the top picture.
 - $\quad A\Delta B = \{1,4\}$
- **Complement** $\overline{A} = \{x \in U \mid x \notin A\}$
 - The blue part on the bottom Venn diagram
 - If universe U = \mathbb{N} , $\overline{A} = \{x \in \mathbb{N} \mid x \notin \{1,2,3\} \}$

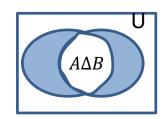






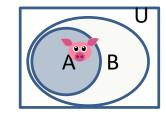


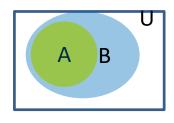


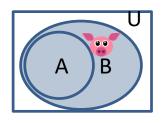


Subsets and operations

- If $A \subseteq B$ then
 - Intersection $A \cap B =$
 - A







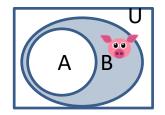
- Union $A \cup B =$

• *B*

- Difference A - B =

• Ø

- Difference B A =
 - $\overline{A} \overline{B}$



Size (cardinality)

 If a set A has n elements, for a natural number n, then A is a finite set and its cardinality is |A|=n.

$$- |\{1,2,3\}| = 3 \\ - |\emptyset| = 0$$

- Sets that are not finite are **infinite**. More on cardinality of infinite sets in a couple of lectures...
 - $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$
 - $-\mathbb{R},\mathbb{C}$
 - $\{0,1\}^*$: set of all finite-length binary strings.

Enrollment puzzle

- There are 160 students in 1000 this semester
- There are 105 students in 1002
- The total number of students in either of these two courses is 200
- How many students are in both 1000 and 1002?

