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Types of proofs

• Direct proof of ∀𝑥 𝐹 𝑥
– Show that 𝐹 𝑥 holds for arbitrary x, then use universal generalization. 

• Often, 𝐹 𝑥 is of the form 𝐺 𝑥 → 𝐻(𝑥)

– Example:  A sum of two even numbers is even.

• Proof by contraposition 
– To prove ∀𝑥 𝐺 𝑥 → 𝐻(𝑥), prove ∀𝑥 ¬𝐻 𝑥 → ¬𝐺(𝑥)
– Example: If square of an integer is even, then this integer is even. 

• Proof by cases 
– If can write ∀𝑥 𝐹 𝑥 as  ∀𝑥(𝐺1 𝑥 ∨ 𝐺2 𝑥 ) → 𝐻(𝑥),  prove  

∀ 𝑥 𝐺1 𝑥 → 𝐻 𝑥 ∧ (𝐺2 𝑥 → 𝐻 𝑥 ))
– Example: triangle inequality ( 𝑥 + 𝑦 ≤ 𝑥 + 𝑦 )

• Proof by contradiction 
– To prove ∀𝑥 𝐹 𝑥 ,  prove ∀𝑥 ¬𝐹 𝑥 → 𝐹𝐴𝐿𝑆𝐸

– Example:  2 is not a rational number. 
– Example: There are infinitely many primes. 



Square root of 2

• Is it possible to have a 
Pythagorean triple with 
a=b=1? 

• Not quite: 12 + 12 = 2, so 
the third side would have to 
be √2.   

• Is it at least possible to 
represent √2 as a ratio of two 
integers?... 
– Pythagoras and others tried…



– What are Rational and irrational numbers?



Rational and irrational numbers

• The numbers that are representable as a fraction of two 
integers are rational numbers. Set of all rational numbers is  ℚ.

• Numbers that are not rational are irrational. 
– Pythagoras figured out that the diagonal of a square is not 

comparable to the sides, but did not think of it as a number.
• More like something weird. 

– It seems that irrational numbers started being treated as numbers in 
9th century in the Middle East. 
• Starting with a Persian mathematician and astronomer Abu-Abdullah 

Muhammad ibn Īsa Māhānī (Al-Mahani). 

• Rational and irrational numbers together form the set of all 
real numbers. 
– Any  sequence of digits, potentially infinite after a decimal point,  is 

a real number. Any point on a line.  

• Irrationality of 2 is a classic proof by contradiction. 



Definition of rational

• We need a slightly more precise definition of 
rational numbers for our proof that 2 is 
irrational. 

• Definition (of rational and irrational numbers):  
– A real number 𝑟 is rational iff ∃𝑚, 𝑛 ∈ ℤ, 𝑛 ≠ 0 ∧
gcd 𝑚, 𝑛 = 1 ∧ 𝑟 =

𝑚

𝑛
.

• Reminder:  greatest common divisor gcd(m,n) is the 
largest integer which divides both m and n. When d=1, m 
and n are relatively prime. 

• Any fraction can be simplified until the numerator and 
denominator are relatively prime, so it is not a restriction

– A real number which is not rational is called 
irrational. 



Proof by contradiction

• Definition (of rational and irrational numbers):  

– A real number 𝑟 is rational iff ∃𝑚, 𝑛 ∈ ℤ, 𝑛 ≠ 0 ∧

gcd 𝑚, 𝑛 = 1 ∧ 𝑟 =
𝑚

𝑛
.

• Theorem:  Square root of 2 is 
irrational.  



Proof by contradiction 

– To prove ∀𝑥 𝐹(𝑥), prove  ∀𝑥 ¬𝐹 𝑥 → 𝐹𝐴𝐿𝑆𝐸

• Universal instantiation: “let n be an arbitrary element of 
the domain 𝑆 of ∀𝑥 ” 

• Suppose that ¬𝐹(𝑛) is true. 

• Derive a contradiction. 

• Conclude that 𝐹(𝑛) is true. 

• By universal generalization,   ∀𝑥 𝐹 𝑥 is true. 

□ (Done).



Proof by contradiction
• Theorem:  Square root of 2 is irrational.  
• Proof:  

– Suppose, for the sake of contradiction, that 2 is 
rational. Then there exist relatively prime  m, n ∈ ℤ, 𝑛 ≠
0 such that 2 =

𝑚

𝑛
.

– By algebra, squaring both sides we get 2 =
𝑚2

𝑛2
.

– Thus 𝑚2 is even, and by the theorem we just proved, 
then m is even. So 𝑚 = 2𝑘 for some k. 

– 2𝑛2 = 4 𝑘2, so 𝑛2 = 2𝑘2, and by the same argument n is 
even. 

– This contradicts our assumption that 𝑚 and 𝑛 are 
relatively prime.   Therefore,  such 𝑚 and 𝑛 cannot exist, 
and so 2 is not rational.

□ (Done).



Proof by cases

• Use the tautology 𝑝1 ∨ 𝑝2 ∧ 𝑝1 → 𝑞 ∧ 𝑝2 → 𝑞 → 𝑞
• If ∀𝑥 𝐹 𝑥 is  ∀𝑥(𝐺1 𝑥 ∨ 𝐺2 𝑥 ) → 𝐻(𝑥),  

• prove 𝐺1 𝑥 → 𝐻 𝑥 ∧ (𝐺2 𝑥 → 𝐻 𝑥 ). 
• Proof: 

– Universal instantiation: “let n be an arbitrary element of the 
domain 𝑆 of ∀𝑥 ” 

– Case 1:  𝐺1 𝑛 → 𝐻(𝑛)
– Case 2: 𝐺2 𝑛 → 𝐻(𝑛)
– Therefore, (𝐺1 𝑛 ∨ 𝐺2 𝑛 ) → 𝐻(𝑛), 
– Now use universal generalization to conclude that  ∀𝑥 𝐹 𝑥 is 

true. 

• This generalizes for any number of cases  𝑘 ≥ 2. 

□ (Done).



Proof by cases. 

• Definition (of odd integers):  
– An integer n is odd iff ∃𝑘 ∈ ℤ, 𝑛 = 2 ⋅ 𝑘 + 1.

• Theorem:  Sum of an integer with a consecutive integer is odd.   

– ∀𝑥 ∈ ℤ 𝑂𝑑𝑑(𝑥 + 𝑥 + 1 ).

• Proof:  
– Suppose n is an arbitrary integer. 
– Case 1:  n is even. 

• So n=2k for some k (by definition).
• Its consecutive integer is n+1 = 2k+1.  Their sum is (n+(n+1))= 2k + (2k+1) = 4k+1.  (axioms). 
• Let 𝑙 = 2𝑘. Then  4𝑘 + 1 = 2𝑙 + 1 is an odd number (by definition). So in this case, n+(n+1) is 

odd. 

– Case 2: n is odd.  
• So n=2k+1 for some k (by definition).
• Its consecutive integer is n+1 = 2k+2.  Their sum is (n+(n+1))= (2k+1) + (2k+2) = 2(2k+1)+1.  

(axioms). 
• Let 𝑙 = 2𝑘 + 1. Then  n+(n+1) = 2(2k+1)+1= 2𝑙 + 1,  which is an odd number (by definition). 

So in this case, n+(n+1) is also odd. 

– Since in both cases n+(n+1) is odd, it is odd without additional assumptions. 
Therefore,  by universal generalization, get ∀𝑥 ∈ ℤ 𝑂𝑑𝑑(𝑥 + 𝑥 + 1 ).

□ (Done).



Proof by cases
• Definition:  an absolute value of a real number r is a non-negative real 

number |r| such that if |𝑟| = 𝑟 if 𝑟 ≥ 0, and 𝑟 = −𝑟 if 𝑟 < 0
– Claim 1:  ∀𝑥 ∈ ℝ, −𝑥 = |𝑥|
– Claim 2: ∀𝑥 ∈ ℝ,− 𝑥 ≤ 𝑥 ≤ |𝑥|

• Theorem:  for any  two reals, sum of their absolute values is at least the 
absolute value of their sum. 

– ∀𝑥, 𝑦 ∈ ℝ 𝑥 + 𝑦 ≤ 𝑥 + 𝑦

• Proof: 
– Let r and s be arbitrary reals. (universal instantiation)

– Case 1:  Let 𝑟 + 𝑠 ≥ 0.
• Then 𝑟 + 𝑠 = 𝑟 + 𝑠 (definition of  ||)

• Since 𝑟 ≤ 𝑟 and 𝑠 ≤ 𝑠 (claim 2),   r+𝑠 ≤ 𝑟 + 𝑠 (axioms), 

• so 𝑟 + 𝑠 = r+𝑠 ≤ 𝑟 + 𝑠 , which is what we need. 

– Case 2: Let 𝑟 + 𝑠 < 0.
• Then 𝑟 + 𝑠 = − 𝑟 + 𝑠 = −𝑟 + −𝑠 (definition of  ||)

• Since −𝑟 ≤ −𝑟 = |𝑟| and −𝑠 ≤ −𝑠 ≤ |𝑠| (claims 1 and 2),   

• |r+𝑠| = (−𝑟) + −𝑠 ≤ 𝑟 + 𝑠 (axioms), which is what we need.

– Since in both cases |r+𝑠| ≤ 𝑟 + 𝑠 , and there are no more cases, |r+𝑠| ≤
𝑟 + 𝑠 without additional assumptions. By universal generalization , can now  

get ∀𝑥, 𝑦 ∈ ℝ 𝑥 + 𝑦 ≤ 𝑥 + 𝑦 .
□ (Done).



Puzzle: the barber

• In a certain village, there is a 
(male)  barber who shaves all and 
only  those men of the village who 
do not shave themselves.

• Question: who shaves the barber? 


