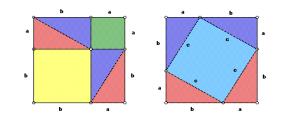


COMP 1002

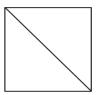
Intro to Logic for Computer Scientists

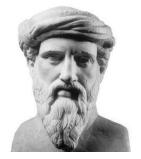
Lecture 15

Types of proofs

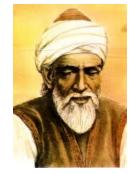


- Direct proof of $\forall x F(x)$
 - Show that F(x) holds for arbitrary x, then use universal generalization.
 - Often, F(x) is of the form $G(x) \rightarrow H(x)$
 - Example: A sum of two even numbers is even.
- Proof by contraposition
 - To prove $\forall x \ G(x) \rightarrow H(x)$, prove $\forall x \neg H(x) \rightarrow \neg G(x)$
 - Example: If square of an integer is even, then this integer is even.
- Proof by cases
 - If can write $\forall x F(x)$ as $\forall x(G_1(x) \lor G_2(x)) \to H(x)$, prove $\forall x (G_1(x) \to H(x)) \land (G_2(x) \to H(x)))$
 - Example: triangle inequality $(|x + y| \le |x| + |y|)$
- Proof by contradiction
 - To prove $\forall x F(x)$, prove $\forall x \neg F(x) \rightarrow FALSE$
 - Example: $\sqrt{2}$ is not a rational number.
 - Example: There are infinitely many primes.

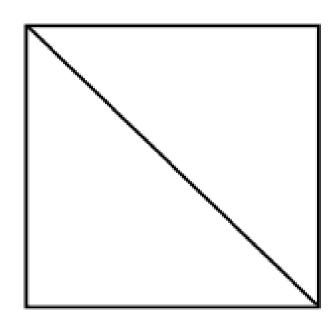


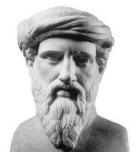


Square root of 2

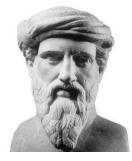


- Is it possible to have a Pythagorean triple with a=b=1?
- Not quite: $1^2 + 1^2 = 2$, so the third side would have to be $\sqrt{2}$.
- Is it at least possible to represent √2 as a ratio of two integers?...
 - Pythagoras and others tried...



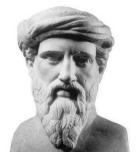


- What are Rational and irrational numbers?



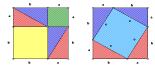
Rational and irrational numbers

- The numbers that are representable as a fraction of two integers are rational numbers. Set of all rational numbers is Q.
- Numbers that are not rational are irrational.
 - Pythagoras figured out that the diagonal of a square is not comparable to the sides, but did not think of it as a number.
 - More like something weird.
 - It seems that irrational numbers started being treated as numbers in 9th century in the Middle East.
 - Starting with a Persian mathematician and astronomer Abu-Abdullah Muhammad ibn Īsa Māhānī (Al-Mahani).
- Rational and irrational numbers together form the set of all real numbers.
 - Any sequence of digits, potentially infinite after a decimal point, is a real number. Any point on a line.
- Irrationality of $\sqrt{2}$ is a classic proof by contradiction.



Definition of rational

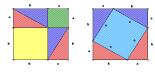
- We need a slightly more precise definition of rational numbers for our proof that $\sqrt{2}$ is irrational.
- *Definition* (of rational and irrational numbers):
 - A real number r is **rational** iff $\exists m, n \in \mathbb{Z}, n \neq 0 \land$ gcd $(m, n) = 1 \land r = \frac{m}{n}$.
 - Reminder: greatest common divisor gcd(m,n) is the largest integer which divides both m and n. When d=1, m and n are relatively prime.
 - Any fraction can be simplified until the numerator and denominator are relatively prime, so it is not a restriction.
 - A real number which is not rational is called irrational.



Proof by contradiction

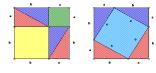
- *Definition* (of rational and irrational numbers):
 - A real number r is **rational** iff $\exists m, n \in \mathbb{Z}, n \neq 0 \land$ gcd $(m, n) = 1 \land r = \frac{m}{n}$.

• *Theorem*: Square root of 2 is irrational.



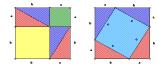
Proof by contradiction

- To prove $\forall x \ F(x)$, prove $\forall x \neg F(x) \rightarrow FALSE$
 - Universal instantiation: "let n be an arbitrary element of the domain S of ∀x "
 - Suppose that $\neg F(n)$ is true.
 - Derive a contradiction.
 - Conclude that F(n) is true.
 - By universal generalization, $\forall x F(x)$ is true.



Proof by contradiction

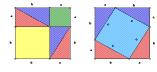
- *Theorem*: Square root of 2 is irrational.
- Proof:
 - Suppose, for the sake of contradiction, that $\sqrt{2}$ is rational. Then there exist relatively prime m, $n \in \mathbb{Z}$, $n \neq 0$ such that $\sqrt{2} = \frac{m}{n}$.
 - By algebra, squaring both sides we get $2 = \frac{m^2}{n^2}$.
 - Thus m^2 is even, and by the theorem we just proved, then m is even. So m = 2k for some k.
 - $-2n^2 = 4k^2$, so $n^2 = 2k^2$, and by the same argument n is even.
 - This contradicts our assumption that m and n are relatively prime. Therefore, such m and n cannot exist, and so $\sqrt{2}$ is not rational.



Proof by cases

- Use the tautology $(p_1 \lor p_2) \land (p_1 \to q) \land (p_2 \to q) \to q$
- If $\forall x F(x)$ is $\forall x(G_1(x) \lor G_2(x)) \to H(x)$,
- prove $(G_1(x) \to H(x)) \land (G_2(x) \to H(x)).$
- Proof:
 - Universal instantiation: "let n be an arbitrary element of the domain S of $\forall x$ "
 - Case 1: $G_1(n) \rightarrow H(n)$
 - Case 2: $G_2(n) \rightarrow H(n)$
 - Therefore, $(G_1(n) \lor G_2(n)) \rightarrow H(n)$,
 - Now use universal generalization to conclude that $\forall x F(x)$ is true.
- This generalizes for any number of cases $k \ge 2$.

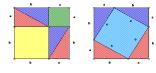
□ (Done).



Proof by cases.

- *Definition* (of odd integers):
 - An integer n is **odd** iff $\exists k \in \mathbb{Z}, n = 2 \cdot k + 1$.
- *Theorem*: Sum of an integer with a consecutive integer is odd.
 - $\quad \forall x \in \mathbb{Z} \ Odd(x + (x + 1)).$
- Proof:
 - Suppose n is an arbitrary integer.
 - Case 1: n is even.
 - So n=2k for some k (by definition).
 - Its consecutive integer is n+1 = 2k+1. Their sum is (n+(n+1))= 2k + (2k+1) = 4k+1. (axioms).
 - Let l = 2k. Then 4k + 1 = 2l + 1 is an odd number (by definition). So in this case, n+(n+1) is odd.
 - Case 2: n is odd.
 - So n=2k+1 for some k (by definition).
 - Its consecutive integer is n+1 = 2k+2. Their sum is (n+(n+1))= (2k+1) + (2k+2) = 2(2k+1)+1. (axioms).
 - Let l = 2k + 1. Then n+(n+1) = 2(2k+1)+1= 2l + 1, which is an odd number (by definition).
 So in this case, n+(n+1) is also odd.
 - − Since in both cases n+(n+1) is odd, it is odd without additional assumptions. Therefore, by universal generalization, get $\forall x \in \mathbb{Z} \ Odd(x + (x + 1))$.

□ (Done).



Proof by cases

- *Definition*: an absolute value of a real number r is a non-negative real number |r| such that if |r| = r if $r \ge 0$, and |r| = -r if r < 0
 - Claim 1: $\forall x \in \mathbb{R}, |-x| = |x|$
 - Claim 2: $\forall x \in \mathbb{R}, -|x| \le x \le |x|$
- *Theorem*: for any two reals, sum of their absolute values is at least the absolute value of their sum.
 - $\quad \forall x, y \in \mathbb{R} \ |x + y| \le |x| + |y|$
- Proof:
 - Let r and s be arbitrary reals. (universal instantiation)
 - Case 1: Let $r + s \ge 0$.
 - Then |r + s| = r + s (definition of ||)
 - Since $r \leq |r|$ and $s \leq |s|$ (claim 2), $r+s \leq |r| + |s|$ (axioms),
 - so $|r + s| = r + s \le |r| + |s|$, which is what we need.
 - Case 2: Let r + s < 0.
 - Then |r + s| = -(r + s) = (-r) + (-s) (definition of ||)
 - Since $-r \leq |-r| = |r|$ and $-s \leq |-s| \leq |s|$ (claims 1 and 2),
 - $|r+s| = (-r) + (-s) \le |r| + |s|$ (axioms), which is what we need.
 - Since in both cases $|r+s| \le |r| + |s|$, and there are no more cases, $|r+s| \le |r| + |s|$ without additional assumptions. By universal generalization, can now get $\forall x, y \in \mathbb{R}$ $|x + y| \le |x| + |y|$. □ (Done).

Puzzle: the barber

 In a certain village, there is a (male) barber who shaves all and only those men of the village who do not shave themselves.

Question: who shaves the barber?

