COMP 1002

Intro to Logic for Computer Scientists

Lecture 15




Types of proofs

Direct proof of Vx F(x)
— Show that F(x) holds for arbitrary x, then use universal generalization.
» Often, F(x) is of the form G(x) - H(x)
— Example: A sum of two even numbers is even.
Proof by contraposition
— To prove Vx G(x) » H(x), prove Vx =H(x) = =G (x)
— Example: If square of an integer is even, then this integer is even.
Proof by cases
— If can write Vx F(x) as Vx(G,(x) V G,(x)) = H(x), prove
Vx (G (x) » Hx)) A (Gz(x) = H(x)))
— Example: triangle inequality (|x + y| < |x]| + |y])
Proof by contradiction
— To prove Vx F(x), prove Vx —=F(x) » FALSE
— Example: V2 is not a rational number.
— Example: There are infinitely many primes.




Square root of 2

* |sit possible to have a
Pythagorean triple with
a=b=17?

* Not quite: 1% + 1% = 2, so
the third side would have to
be V2.

* |sit at least possible to

represent V2 as a ratio of two
integers?...

— Pythagoras and others tried...




— What are Rational and irrational numbers?
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Rational and irrational numbers

The numbers that are representable as a fraction of two
integers are rational numbers. Set of all rational numbers is Q.

Numbers that are not rational are irrational.

— Pythagoras figured out that the diagonal of a square is not
comparable to the sides, but did not think of it as a number.

* More like something weird.

— It seems that irrational numbers started being treated as numbers in
9t century in the Middle East.

* Starting with a Persian mathematician and astronomer Abu-Abdullah
Muhammad ibn Isa Mahani (Al-Mahani).

Rational and irrational numbers together form the set of all
real numbers.

— Any sequence of digits, potentially infinite after a decimal point, is
a real number. Any point on a line.

Irrationality of /2 is a classic proof by contradiction.




* We need a slightly more precise definition of

rational numbers for our proof that v2 is
irrational.

e Definition (of rational and irrational numbers):

— A real number risrational iff im,n € Z,n # 0 A

gcdim,n) =1 A r ==,

n
 Reminder: greatest common divisor gcd(m,n) is the
largest integer which divides both m and n. When d=1, m
and n are relatively prime.

* Any fraction can be simplified until the numerator and

denominator are relatively prime, so it is not a restriction

— A real number which is not rational is called
irrational.
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Proof by contradiction

e Definition (of rational and irrational numbers):

— A real number risrationaliff Am,n € Z,n # 0 A
m

gcdim,n) =1 A r=—.

n

 Theorem: Square root of 2 is
irrational.
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Proof by contradiction

— To prove Vx F(x), prove Vx -F(x) - FALSE

Universal instantiation: “let n be an arbitrary element of
the domain S of Vx ”

Suppose that —=F(n) is true.

Derive a contradiction.

Conclude that F(n) is true.

By universal generalization, Vx F(x) is true.
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Proof by contradiction

 Theorem: Square root of 2 is irrational.
* Proof:

— Suppose, for the sake of contradiction, that V2 is
rational. Then there exist relatively prime m,n€ 7Z, n #

0 such that V2 = Ly

n
2

— By algebra, squaring both sides we get 2 = Ly

n2
— Thus m? is even, and by the theorem we just proved,
then m is even. So m = 2k for some k.

— 2n?% = 4 k? son? = 2k?, and by the same argument n is
even.

— This contradicts our assumption that m and n are
reIative\Iy_prime. Therefore, such m and n cannot exist,
2

and so is not rational.
O (Done).
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Proof by cases

Use the tautology (p1 Vp2) A(p1 > @) A(p2 = q) > ¢
If Vx F(x)is Vx(G{(x) V G,(x)) - H(x),

prove (Gl(x) — H(x)) A (G,(x) - H(x)).

Proof:

— Universal instantiation: “let n be an arbitrary element of the
domain S of Vx”

— Case 1: G;(n) » H(n)
— Case 2: G,(n) » H(n)
— Therefore, (G;(n) V G,(n)) - H(n),

— Now use universal generalization to conclude that Vx F(x) is
true.

This generalizes for any number of cases k = 2.

O (Done).
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Proof by cases.

* Definition (of odd integers):
— Anintegernisoddiff 3k € Z,n =2 -k + 1.
 Theorem: Sum of an integer with a consecutive integer is odd.

— Vx €Z 0dd(x + (x + 1)).
* Proof:
— Suppose nis an arbitrary integer.

— Case 1: nis even.
* So n=2k for some k (by definition).
* |ts consecutive integer is n+1 = 2k+1. Their sum is (n+(n+1))= 2k + (2k+1) = 4k+1. (axioms).
. Liltdl = 2k.Then 4k + 1 = 21l + 1 is an odd number (by definition). So in this case, n+(n+1) is
odd.
— Case 2: nis odd.
* So n=2k+1 for some k (by definition).
. zts g:onse)zcutive integer is n+1 = 2k+2. Their sum is (n+(n+1))= (2k+1) + (2k+2) = 2(2k+1)+1.
axioms).
* Letl =2k + 1. Then n+(n+1) = 2(2k+1)+1= 2l 4+ 1, which is an odd number (by definition).
So in this case, n+(n+1) is also odd.
— Since in both cases n+(n+1) is odd, it is odd without additional assumptions.
Therefore, by universal generalization, get Vx € Z 0dd(x + (x + 1)).

O (Done).
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Proof by cases

Definition: an absolute value of a real number r is a non-negative real
number |r| suchthatif |r|=rifr >0, and|r| = —rifr <0

— Claim 1: Vx € R, |—x| = |x|

— Claim2: Vx € R, —|x| < x < |x]
Theorem: for any two reals, sum of their absolute values is at least the
absolute value of their sum.

- Vx,y €ER |x +y| < |x]| + |yl
Proof:
— Let r and s be arbitrary reals. (universal instantiation)

— Casel: Letr+s = 0.
* Then |r + s| = r + s (definition of ||)
* Sincer < |r|ands < |s| (claim2), r+s < |r| + |s| (axioms),
* so|r+s|=r+s <|r|+|s|, which is what we need.
— Case 2: Letr+s <0.
e Then|r+s|=—(r+s)=(—r)+ (—Ss) (definition of |])
* Since —r < |-r| = |r|and —s < |—s| < |s] (claims 1 and 2),
Ir+s| = (=r) + (=s) < |r| + |s]| (axioms), which is what we need.
— Since in both cases |r+s| < |r| + |s|, and there are no more cases, |r+s| <

Ir| + |s| without additional assumptions. By universal generalization , can now

getvx,y ER |x +y| < |x| + |yl.
O (Done).



* |n a certain village, there is a
(male) barber who shaves all and
only those men of the village who
do not shave themselves.

e Question: who shaves the barber?




