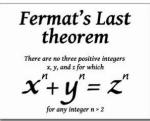


COMP 1002

Intro to Logic for Computer Scientists

Lecture 13

Puzzle 11

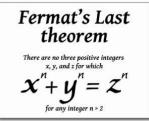


• Let $S = \{x \in \mathbb{N} \mid x \text{ is even}\} \cap \{x \in \mathbb{N} \mid x \text{ is odd}\}$

• Prove or disprove:

$\forall x \in S$, x does not divide x^2

Puzzle 11

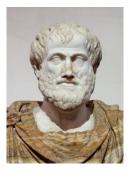


- Let $S = \{x \in \mathbb{N} \mid x \text{ is even}\} \cap \{x \in \mathbb{N} \mid x \text{ is odd}\}$ - S = \emptyset
- Prove or disprove:

 $\forall x \in S$, x does not divide x^2

- Let P(x)= "x does not divide x^2 "
- To disprove, can give a counterexample
 - Find an element in S such that P(x) is true...
 - But there is no such element in S, because there are no elements in S at all!
- To prove, enough to check that it holds for all elements of S.
 - There is none, so it does hold for every element in S.
- Another way: Since S is defined as a subset of natural numbers, can read $\forall x \in S P(x)$ as $\forall x \in \mathbb{N} (x \in S \rightarrow P(x))$.
 - Since " $x \in S$ " is always false, $x \in S \rightarrow P(x)$ is true for every $x \in \mathbb{N}$
- Call a statement $\forall x \in \emptyset P(x)$ vacuously true.

Universal Modus Ponens



- All men are mortal
- Socrates is a man

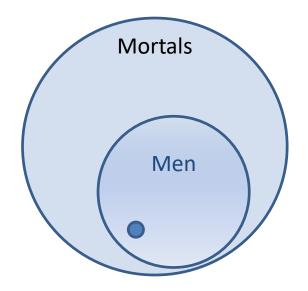
• Therefore, Socrates is mortal

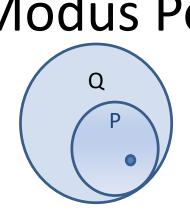
- All cats like fish
- Molly likes fish

• Therefore, Molly is a cat

Universal Modus Ponens

- $\forall x, P(x) \rightarrow Q(x)$
- *P*(*a*)
- _____
- Q(a)
- All men are mortal $(\forall x, Man(x) \rightarrow Mortal(x))$
- Socrates is a man (*Man*(*Socrates*))
- Therefore, Socrates is mortal (*Mortal*(*Socrates*)
- All numbers are either odd or even
- 2 is a number
- Therefore, 2 is either odd or even.
- All trees drop leaves
- Pine does not drop leaves
- Therefore, pine is not a tree

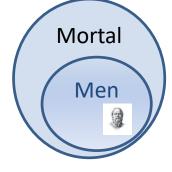


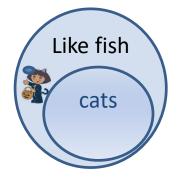


Universal Modus Ponens

Х

- All men are mortal
- Socrates is a man
- Therefore, Socrates is mortal
- All cats like fish
- Molly likes fish
- Therefore, Molly is a cat
- $(\forall x) Cat(x) \rightarrow like_fish(x)$
- like_fish(Molly)
- ∴ Cat(Molly)





Instantiation/generalization

- Instantiation: taking a specific instance (value) of a variable
 - Can be just giving this variable a name

-Even(2), Even(k)

- Generalization: replacing a specific value with a quantified variable
 - Have Even(2)
 - $\operatorname{Get} \exists x \operatorname{Even}(x)$
 - This is existential generalization.

- In general, if $\forall x \in S \ F(x)$ is true for some formula F(x), if you take any specific element $a \in S$, then F(a) must be true.
 - This is called the **universal instantiation** rule.
 - $\forall x \in \mathbb{N} \ (x > -1)$
 - \therefore 5 > -1
- If you prove F(a) without any assumptions about a other than $a \in S$, then $\forall x \in S, F(x)$
 - This is called **universal generalization**.

Existential instantiation

- If $\exists x \in S F(x)$ is true, then you can give that element of S for which F(x) is true a name, as long as that name has not been used elsewhere.
 - "Let n be an even number. Then n=2k for some k".
 - $\forall x \in \mathbb{N} \quad Even(x) \rightarrow \exists y \in \mathbb{N} \quad (x = 2 * y)$
 - Important to have a new name!
 - "Let n and m be two even numbers. Then n=2k and m=2k" is wrong!
 - $\forall x_1, x_2 \in \mathbb{N}$ $Even(x_1) \wedge Even(x_2) \rightarrow \exists y_1, y_2 \in \mathbb{N}$ $(x_1 = 2 * y_1) \wedge (x_2 = 2 * y_2)$
 - "Let n and m be two even numbers. Then n=2k and $m=2\ell$ "

Other inference rules

• Combining universal instantiation with tautologies, get other types of arguments:

• (This particular rule is called "transitivity")

- Direct proof of $\forall x F(x)$
 - Show that F(x) holds for arbitrary x, then use universal generalization.
 - Often, F(x) is of the form $G(x) \rightarrow H(x)$
 - Example: A sum of two even numbers is even.
- Proof by cases
 - If can write $\forall x F(x)$ as $\forall x (G_1(x) \lor G_2(x) \lor \cdots \lor G_k(x)) \to H(x)$, prove $(G_1(x) \to H(x)) \land (G_2(x) \to H(x)) \land \cdots \land (G_k(x) \to H(x))$

```
Example: x \in \{\text{days in August}\}\
(\forall x)(rain(x) V sunny(x) V foggy(x)) \rightarrowhot(x)
```

```
you may prove
```

(∀x)

 $(rain(x) \rightarrow hot(x))$ ∧ (sunny(x) $\rightarrow hot(x))$ ∧ (foggy(x) $\rightarrow hot(x)$))

Type of Proof (2)

• Proof by contraposition

- To prove $\forall x \ G(x) \rightarrow H(x)$, prove $\forall x \neg H(x) \rightarrow \neg G(x)$
- Example: $(\forall x)(even(x) \rightarrow integer(x)), prove (\forall x)(\neg integer(x) \rightarrow \neg even(x))$
- Proof by contradiction
 - To prove $\forall x \ F(x)$, prove $\forall x \neg F(x) \rightarrow FALSE$
 - Example: $\sqrt{2}$ is not a rational number.
 - Example: There are infinitely many primes.

Puzzle: better than nothing

- Nothing is better than eternal bliss
- A burger is better than nothing

Is there anything wrong with this argument?

<

