

COMP 1002

Intro to Logic for Computer Scientists

Lecture 12

Admin stuff

- Assignment 2 posted. Due Feb 5.
 - Sources are posted in LaTeX, EazyTeX, Markdown and HTML

Proofs

- What is a theorem?
 Lemma, claim, etc
- What is a proof?
 - Where do we start?
 - Where do we stop?
 - What steps do we take?
 - How much detail is needed?

Theories and theorems

- **Theory:** axioms + everything derived from them using rules of inference
 - Euclidean geometry, set theory, theory of reals, theory of integers, Boolean algebra...
 - In verification: theory of arrays.
- **Theorem:** a true statement in a theory
 - Proved from axioms (usually, from already proven theorems)

Pythagorean theorem

- A statement can be a theorem in one theory and false in another!
 - Between any two numbers there is another number.
 - A theorem for real numbers. False for integers!

Axioms example: Euclid's postulates

- Through 2 points a line segment can be drawn
 - A line segment can be extended to a straight line indefinitely
- III. Given a line segment, a circle can be drawn with it as a radius and one endpoint as a centre
- IV. All right angles are congruent
- V. Parallel postulate

Some axioms for propositional logic

- For any formulas A, B, C:
 - $A \lor \neg A \equiv True$
 - $True \lor A \equiv True.$
 - False $\lor A \equiv A$.
 - $\operatorname{AV} A \equiv A \wedge A \equiv A$

 $A \land \neg A \equiv False$

 $True \land A \equiv A$

- $False \land A \equiv False$
- Also, like in arithmetic (with ∨ as +, ∧ as *)
 - $-A \lor B \equiv B \lor A$ and $(A \lor B) \lor C \equiv A \lor (B \lor C)$
 - Same holds for \wedge .
 - Also, $(A \lor B) \land C \equiv (A \land C) \lor (B \land C)$
- And unlike arithmetic

 $-(A \land B) \lor C \equiv (A \lor C) \land (B \lor C)$

Counterexamples

- To disprove a statement, enough to give a counterexample: a scenario where it is false
 - To disprove that $A \rightarrow B \equiv B \rightarrow A$
 - Take A = true, B = false,
 - Then $A \rightarrow B$ is false, but $B \rightarrow A$ is true.

Counterexamples

- To disprove that if $\forall x \exists y P(x, y)$, then $\exists y \forall x P(x, y)$,
 - Set the domain of x and y to be {0,1}
 - Set P(0,0) and P(1,1) to true, and P(0,1), P(1,0) to false.
 - So P(x,y) is x = y. This is called an **interpretation** of P(x,y)
 - Then $\forall x \exists y P(x, y)$ is true, but $\exists y \forall x P(x, y)$ is false.
 - Because $(P(0,0) \lor P(0,1)) \land (P(1,0) \lor P(1,1))$ is true,
 - But $(P(0,0) \land P(1,0)) \lor (P(0,1) \land P(1,1))$ is false.
 - So the counterexample in this case consists of *domains* for x and y (they don't have to be equal), and an *interpretation* of the predicate P(x, y) over these domains.

Constructive proofs

- To prove a statement of the form ∃x, sometimes can just find that x
 - $\exists x \in \mathbb{N} Even(x) \land Prime(x)$
 - Set x=2.
 - Even(x) holds.
 - Prime(x) holds.
 - Therefore, $Even(x) \wedge Prime(x)$ holds.
 - Done.
 - This proof is **constructive**, because we constructed an x which makes the formula $Even(x) \wedge Prime(x)$ true.

Proof

- To prove that something of the form $\forall x F(x)$:
 - Make sure it holds in every scenario (method of exhaustion)
 - For all possible values of A and B, $\neg B \rightarrow \neg A$ is equivalent to $A \rightarrow B$, by checking the truth table.
 - But there can be too many scenarios!
 - For any integer, there is a larger integer which is a prime.
 - For any two reals, there is a real between them.
 - Instead, use axioms and rules of inference to derive it.

 $\neg B \to \neg A \equiv \neg \neg B \lor \neg A \equiv B \lor \neg A \equiv \neg A \lor B \equiv A \to B$

- So $(\neg B \rightarrow \neg A) \leftrightarrow (A \rightarrow B)$ is a tautology.
- And, therefore, $\forall A, B \in \{ True, False \}, \neg B \rightarrow \neg A \equiv A \rightarrow B$

Puzzle 11

• Let $S = \{x \in \mathbb{N} \mid x \text{ is } even \land x \text{ is } odd\}$

• Prove or disprove:

$\forall x \in S$, x does not divide x^2

