

COMP 1002

Intro to Logic for Computer Scientists

Lecture 1

Admin stuff

- Lectures: Mon, Tue and Thu, 1pm.
- Labs: Mondays and Wednesdays 9am.
 There will be no labs for the first week or two.
- Course website: follow the link from <u>www.cs.mun.ca/~kol</u>
- Questions:
 - Office hours?
 - Comp 1000?
 - Week away in March?

Marking scheme

- Lab quizzes: 24% total (~9 labs)
 - on D2L (Brightspace). In the last hour of the lab.
 - Lowest lab mark dropped.
- Assignments: 5 x 6%
 - Last assignment might be due during last week.
- Midterm: 15%
- Final exam: 31%

– We might have a practice final

• You see the following cards. Each has a letter on one side and a number on the other.

• You see the following cards. Each has a letter on one side and a number on the other.

• You see the following cards. Each has a letter on one side and a number on the other.

• You see the following cards. Each has a letter on one side and a number on the other.

• You see the following cards. Each has a letter on one side and a number on the other.

• You see the following cards. Each has a letter on one side and a number on the other.

• You see the following cards. Each has a letter on one side and a number on the other.

• You see the following cards. Each has a letter on one side and a number on the other.

- Which cards do you need to turn to check that if a card has a J on it then it has a 5 on the other side?
 - All cards where J is visible.
 - Plus all cards with a number other than 5 visible.

"if ... then" in logic

• This puzzle has a logical structure:

"if A then B"

- What circumstances make this true?
 - A is true and B is true
 - A is true and B is false
 - A is false and B is true
 - A is false and B is false

If A then B

- We make logical conclusions all the time
- But do we always make them "logically"?
- Sometimes people think that "if ... then" goes both ways...
 - If you live in NL, you must pay HST. John lives in BC. Does he pay HST?
 - If today it Tuesday, then there is a COMP1002 lecture. Today is Thursday. Is there a COMP1002 lecture today?

Natural vs. Logic language

- Natural languages are ambiguous.
- For example, the word "any" can have different meanings depending on the context:
- Any = some
 - She will be happy if she can solve any question.
 - She will be happy if she can solve every question.
- Any = all
 - Any student knows this.
 - Every student knows this.

Twins puzzle

- There are two identical twin brothers, Dave and Jim.
- One of them always lies; another always tells the truth.
- Suppose you see one of them and you want to find out his name.
- How can you learn if you met Dave or Jim by asking just one short yes-no question? You don't know which one of them is the liar.

- There are two identical twin brothers, Dave and Jim.
- One of them always lies; another always tells the truth
- Suppose you see one of them and you want to find out his name.
- How can you learn if you met Dave or Jim by asking just one short yes-no question? You don't know which one of them is the liar.

This is Jim	Jim is a liar		
Yes	Yes		
Yes	No		
No	Yes		
No	No		

- There are two identical twin brothers, Dave and Jim.
- One of them always lies; another always tells the truth.
- Suppose you see one of them and you want to find out his name.
- How can you learn if you met Dave or Jim by asking just one short yes-no question? You don't know which one of them is the liar.

This is Jim	Jim is a liar	This is a liar		
Yes	Yes	Yes		
Yes	Νο	No		
No	Yes	No		
No	No	Yes		

- There are two identical twin brothers, Dave and Jim.
- One of them always lies; another always tells the truth.
- Suppose you see one of them and you want to find out his name.
- How can you learn if you met Dave or Jim by asking just one short yes-no question? You don't know which one of them is the liar.

This is Jim	Jim is a liar	This is a liar	Are you Jim?	
Yes	Yes	No	No	
Yes	Νο	No	Yes	
No	Yes	Yes	No	
No	No	Yes	Yes	

- There are two identical twin brothers, Dave and Jim.
- One of them always lies; another always tells the truth.
- Suppose you see one of them and you want to find out his name.
- How can you learn if you met Dave or Jim by asking just one short yes-no question? You don't know which one of them is the liar.

This is Jim	Jim is a liar	This is a liar	Are you Jim?	Is 2+2=4?
Yes	Yes	Yes	No	No
Yes	Νο	No	Yes	Yes
No	Yes	No	No	Yes
No	No	Yes	Yes	No

- There are two identical twin brothers, Dave and Jim.
- One of them always lies; another always tells the truth.
- Suppose you see one of them and you want to find out his name.
- How can you learn if you met Dave or Jim by asking just one short yes-no question? You don't know which one of them is the liar.

	This is Jim	Jim is a liar	This is a liar	Are you Jim?	Is 2+2=4?	Is Dave a liar?
(Yes	Yes	Yes	No	No (Yes
(Yes	No	No	Yes	Yes (Yes
	No	Yes	No	No	Yes	No
	No	No	Yes	Yes	No	No

Language of logic: building blocks

- **Proposition**: A sentence that can be *true* or *false*.
 - A: "It is raining in St. John's right now".
 - B: "2+2=7"
 - But not "Hi!" or "what is x?"
- Propositional variables:
 - A, B, C (or p, q, r)
 - It is a shorthand to denote propositions:
 - "B is true", for the B above, means "2+2=7" is true.

Language of logic: connectives

Pronunciation	Notation	Meaning
Not A (negation)	¬ A	Opposite of A is true, $\neg A$ is true when A is false
A and B (conjunction)	ΑΛΒ	True if both A and B are true
A or B (disjunction)	AVB	True if either A or B are true (or both)
If A then B (implication)	$A \rightarrow B$	True whenever if A is true, then B is also true

- Let A be "It is sunny" and B be "it is cold"
 - ¬ A: It is not sunny
 - $A \wedge B$: It is sunny and cold
 - A V B: It is either sunny or cold
 - $A \rightarrow B$: If it is sunny, then it is cold
- Can build longer formulas by combining smaller formulas using connectives.
 - And parentheses: will see later when can remove them.