
COMP1002 Winter 2017 midterm exam study sheet

• Propositional statement : expression that has a truth value (true/false). It is a tautology if it is always
true, contradiction if always false.

• Logic connectives: negation (“not”) ¬p, conjunction (“and”) p∧q, disjunction (“or”) p∨q, implication
p → q (equivalent to ¬p ∨ q), biconditional p ↔ q (equivalent to (p → q) ∧ (q → p)). The order of
precedence: ¬ strongest, ∧ next, ∨ next, → and ↔ the same, weakest.

• If p → q is an implication, then ¬q → ¬p is its contrapositive, q → p a converse and ¬p → ¬q
an inverse. An implication is equivalent to its contrapositive, but not to converse/inverse or their
negations. A negation of an implication p→ q is p ∧ ¬q (it is not an implication itself!)

• A truth table has a line for each possible values of propositional variables (2k lines if there are k
variables), and a column for each variable and subformula, up to the whole statement. The cells of
the table contain T and F depending whether the (sub)formula is true for the corresponding values
of variables.

• A truth assignment is a string of values of variables to the formula, usually a row with values of first
several columns in the truth table (number of columns = number of variables). A truth assignment
is satisfying the formula if the value of the formula on these variables is T, otherwise the truth
assignment is falsifying. A truth assignment can be encoded by a formula that is a ∧ of variables
and their negations, with negated variables in places that have F (false) in the assignment, and non-
negated that have T (true). For example, x = T, y = F, z = F is encoded as (x ∧ ¬y ∧ ¬z).It is an
encoding in a sense that this formula is true only on this truth assignment and nowhere else.

• Finding a method for checking if a formula has a satisfying assignment that is always significantly
faster than using truth tables (that is, better than brute-force search) is a million dollar problem,
known as ”P vs. NP”.

• Two formulas are logically equivalent if they have the same truth table. The most famous example of
logically equivalent formulas is ¬(p∨ q) ≡ (¬p∧¬q) (with a dual version ¬(p∧ q) ≡ (¬p∨¬q)) where
p and q can be arbitrary (propositional, here) formulas. These pairs of logically equivalent formulas
are called DeMorgan’s law.

• There are several other important pairs of logically equivalent formulas, called logical identities or
logic laws. We will talk more about them when we talk about Boolean algebras. Here, just remember
that FALSE∧p ≡ p∧¬p ≡ FALSE, FALSE∨p ≡ TRUE∧p ≡ p and TRUE∨p ≡ p∨¬p ≡ TRUE.

• A set of logic connectives is called complete if it is possible to make a formula with any truth table
out of these connectives. For example, ¬,∧ is a complete set of connectives, and so is the Sheffer’s
stroke | (where p|q ≡ ¬(p ∧ q)), also called NAND for “not-and”. But ∨,∧ is not a complete set of
connectives since then it is impossible to express a truth table with 0 when all variables are 1.

• An argument consists of several formulas called premises and a final formula called a conclusion.
If we call premises A1 . . . An and conclusion B, then an argument is valid iff premises imply the
conclusion, that is, A1 ∧ · · · ∧An → B. We usually write them in the following format:
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Today is either Thursday or Friday
On Thursdays I have to go to a lecture
Today is not Friday (alternatively, On Friday I have to go to the lecture)
—————————————————–
∴ I have to go to a lecture today

• A valid form of argument is called rule of inference. The most prominent such rule is called modus
ponens.

p→ q
p ————–
∴ q

• There are several main types of proofs depending on the types of rules of inference used in the proof.
The main ones are direct proof, by contraposition, by contradiction and by cases.

• There are two main normal forms for the propositional formulas. One is called Conjunctive normal
form (CNF) and is an ∧ of ∨ of either variables or their negations (here, by ∧ and ∨ we mean several
formulas with ∧ between each pair, as in (¬x ∨ y ∨ z) ∧ (¬u ∨ y) ∧ x. A literal is a variable or its
negation (x or ¬x, for example). A ∨ of (possibly more than 2) literals is called a clause, for example
(¬u ∨ z ∨ x), so a CNF is true for some truth assignment whenever this assignment makes each of
the clauses is true, that is, each clause has a literal that evaluates to true under this assignment. A
Disjunctive normal form (DNF) is like CNF except the roles of ∧ and ∨ are reversed. A ∧ of literals
in a DNF is called a term. To construct canonical DNF and a CNF, start from a truth table and
then for every satisfying truth assignment ∨ its encoding to a DNF, and for every falsifying truth
assignment ∧ the negation of its encoding to the CNF, and apply DeMorgan’s law. This may result
in a very large CNFs and DNFs, comparable to the size of the truth table itself (2number of variables).

• A resolution proof system is used to find a contradiction in a formula (and, similarly, to prove that a
formula is a tautology by finding a contradiction in its negation). Resolution starts with a formula
in a CNF form, and applies the rule “from clause (C ∨ x) and clause (D ∨¬x) derive clause (C ∨D)
until a falsity F (equivalently, empty clause () ) is reached (so in the last step one of the clauses being
resolved contains just one variable and another clause being resolved contains just that variable’s
negation. Resolution can be used to check the validity of an argument by running it on the ∧ of all
premises (converted, each, to a CNF) ∧ together with the negation of the conclusion.

• Pigeonhole principle If n pigeons sit in n− 1 holes, so that each pigeon sits in some hole, then some
hole has at least two pigeons. Can be used to show, for example, that there are two people in our class
who carry the same number of pens. There is no small resolution proof of the pigeonhole principle.

• Boolean functions are functions which take as argument boolean (ie, propositional) variables and
return 1 or 0 (or, the convention here is 1 instead of T, and 0 instead of F). Each Boolean function
on n variables can be fully described by its truth table. A size of a truth table of a function on n
variables is 2n. Even though we often can have a smaller description of a function, vast majority of
Boolean functions cannot be described by anything much smaller. Every Boolean function can be
described by a CNF or DNF, using the above construction.
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Predicate logic:

• A predicate is like a propositional variable, but with free variables, and can be true or false depending
on the values of these free variables. A domain of a predicate is a set from which the free variables
can take their values (e.g., the domain of Even(n) can be integers).

• Quantifiers For a predicate P (x), a quantified statement “for all” (“every”, “all”) ∀xP (x) is true iff
P (x) is true for every value of x from the domain (also called universe); here, ∀ is called a universal
quantifier. A statement “exists” (“some”, “a”) ∃xP (x) is true whenever P (x) is true for at least one
element x in the universe; ∃ is an existential quantifier. The word “any” means sometimes ∃ and
sometimes ∀. A domain (universe) of a quantifier, sometimes written as ∃x ∈ D and ∀x ∈ D is the
set of values from which the possible choices for x are made. If the domain of a quantifier is empty,
then if the quantifier is universal then the formula is true, and if quantifier is existential, false. A
scope of a quantifier is a part of the formula (akin to a piece of code) on which the variable under
that quantifier can be used (after the quantifier symbol/inside the parentheses/until there is another
quantifier over a variable with the same name). A variable is bound if it is under a some quantifier
symbol, otherwise it is free.

• First-order formula A predicate is a first-order formula (possibly with free variables). A ∧,∨,¬ of
first-order formulas is a first-order formula. If a formula A(x) has a free variable (that is, a variable x
that occurs in some predicates but does not occur under quantifiers such as ∀x or ∃x), then ∀x A(x)
and ∃x A(x) are also first-order formulas.

• Negating quantifiers. Remember that ¬∀xP (x) ≡ ∃x¬P (x) and ¬∃xP (x) ≡ ∀x¬P (x).

• Reasoning in predicate logic The rule of universal instantiation says that if some property is true of
everything in the domain, then it is true for any particular object in the domain. A combination of
this rule with modus ponens such as what is used in the “all men are mortal, Socrates is a man ∴
Socrates is mortal” is called universal modus ponens.

• Normal forms In a first-order formula, it is possible to rename variables under quantifiers so that they
all have different names. Then, after pushing negations into the formulas under the quantifiers, the
quantifier symbols can be moved to the front of a formula (making their scope the whole formula).

• Formulas with finite domains If the domain of a formula is finite, a formula can be converted into a
propositional formula by changing each ∀x quantifier with a ∧ of the formula on all possible values
of x; an ∃ quantifier becomes a ∨. Then terms of the form P (value) (e.g., Even(5)) are treated as
propositional variables.

• Limitations of first-order logic There are concepts that are not expressible by first-order formulas,
for example, transitivity (“is there a flight from A to B with arbitrary many legs?” cannot be a
database query described by a first-order formula).

Proof strategies

• Existential statement: ∀xF (x). Constructive proof: give an example satisfying the formula under the
quantifier (e.g, exists x which is both even and prime: take n = 2), then conclude by the existential
generalization rule that ∃xF (x) is true. Non-constructive proof: If the proof says ∃nP (n), show that
assuming ∀n¬P (n) leads to contradiction.
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• Universal statement: ∀xF (x). To prove that it is false, give a counterexample. To prove that it is
true, start with the universal instantiation: take an arbitrary element, give it a name (say n) , and
prove that F (n) holds without any additional assumptions. By universal generalization, conclude
that ∀xF (x) holds.

• To prove F (n)

– Direct proof: show that F (n) holds directly, using definition, algebra, etc. If F (n) is of the form
G(n) → H(n), then assume G(n) and derive H(n) from this assumption. Examples: sum of
even integers is even, if n ≡ m( mod d) then there is k ∈ Z such that n = m + kd, if n is odd
then n2 ≡ 1( mod 8), Pythagores theorem.

– Proof by cases If F (x) is of the form (G1(x)∨G2(x)∨· · ·∨Gk(x))→ H(x), then prove G1(x)→
H(x), G2(x) → H(x) . . . Gk(x) → H(x). Examples: sum of two consecutive integers is odd,
∀x, y ∈ R|x + y| ≤ |x|+ |y|, min(x, y) = (x + y − |x− y|)/2, k2 + k is even.

– Proof by contraposition If F (n) is of the form G(n)→ H(n), can prove ¬H(n)→ ¬G(n) (that
is, assume that H(n) is false, and derive that G(n) is false). Examples: pigeonhole principle, if
a square of an integer is even, then integer itself is even.

– Proof by contradiction To prove F (n), show that ¬F (n) → FALSE. Examples:
√

(2) is
irrational, there are infinitely many primes.

• Some definitions:

– An n ∈ Z is even if ∃k ∈ Z such that n = 2k. An n ∈ Z is odd if ∃k ∈ Z such that n = 2k + 1.
An n ∈ Z is divisible by m ∈ Z if ∃k ∈ Z such that n = km.

– Modular arithmetic: for any n, d 6= 0 ∈ Z ∃q, r ∈ Z such that n = qd + r and 0 ≤ r < d. Here,
q is a quotient and r is a remainder. Congruence: for n,m, d 6= 0 ∈ Z, n ≡ m( mod d) (”n is
congruent to m mod d”) iff ∃q1, q2, r ∈ Z such that 0 ≤ r ≤ d, n = q1d + r and m = q2d + r.
That is, n and m have the same remainder modulo d.

– Absolute value of x ∈ R, denoted |x|, is x if x ≥ 0 and −x if x < 0.

Set Theory

• A set is a well-defined collection of objects, called elements of a set. An object x belongs to set A is
denoted x ∈ A (said “x in A” or “x is a member of A”). Usually for every set we consider a bigger
“universe” from which its elements come (for example, for a set of even numbers, the universe can
be all natural numbers). A set is often constructed using set-builder notation: A = {x ∈ U |P (x)}
where U is a universe , and P (x) is a predicate statement; this is read as “x in U such that P (x)”
and denotes all elements in the universe for which P (x) holds. Alternatively, for a small set, one can
list its elements in curly brackets (e.g., A = {1, 2, 3, 4}.)

• A set A is a subset of set B, denotedA ⊆ B, if ∀x(x ∈ A → x ∈ B). It is a proper subset if ∃x ∈ B
such that x /∈ A. Otherwise, if ∀x(x ∈ A↔ x ∈ B) two sets are equal.

• Special sets are: empty set ∅, defined as ∀x(x /∈ ∅). Universal set U : all potential elements under
consideration at given moment. Natural numbers N (here, 0 ∈ N), integers Z, rationals Q , reals R.
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Table 1: Laws of boolean algebras, logic and sets
Name Logic law Set theory law Boolean algebra law

Double Negation ¬¬p ≡ p A = A x = x

DeMorgan’s laws ¬(p ∨ q) ≡ (¬p ∧ ¬q) A ∪B = A ∩B x + y = x · y
¬(p ∧ q) ≡ (¬p ∨ ¬q) A ∩B = A ∪B x · y = x + y

Associativity (p ∨ q) ∨ r ≡ p ∨ (q ∨ r) (A ∪B) ∪ C = A ∪ (B ∪ C) (x + y) + z = x + (y + z)
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r) (A ∩B) ∩ C = A ∩ (B ∩ C) (x · y) · z = x · (y · z)

Commutativity p ∨ q ≡ q ∨ p A ∪B = B ∪A x + y = y + x
p ∧ q ≡ q ∧ p A ∩B = B ∩A x · y = y · x

Distributivity p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) x · (y + z) = (x · y) + (x · z)
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) x + (y · z) = (x + y) · (x + z)

Idempotence (p ∨ p) ≡ p ≡ (p ∧ p) A ∪A = A = A ∩A x + x = x = x · x
Identity p ∨ F ≡ p ≡ p ∧ T A ∪ ∅ = A = A ∩ U x + 0 = x = x · 1
Inverse p ∨ ¬p ≡ T A ∪ Ā = U x + x̄ = 1

p ∧ ¬p ≡ F A ∩ Ā = ∅ x · x̄ = 0

Domination p ∨ T ≡ T A ∪ U = U x + 1 = 1
p ∧ F ≡ F A ∩ ∅ = ∅ x · 0 = 0

• A power set for a given set A, denoted 2A or P(A), is the set of all subsets of A. If A has n elements,
then 2A has 2n elements (since for every element there are two choices, either it is in, or not).

• Basic set operations are a complement Ā, denoting all elements in the universe that are not in
A, then union A ∪ B= {x|x ∈ A or x ∈ B}, and intersection A ∩ B= {x|x ∈ A and x ∈ B}
and set difference A − B = {x|x ∈ A and x /∈ B}. Lastly, the Cartesian product of two sets
A×B = {(a, b)|a ∈ A and b ∈ B}.

• To prove that A ⊆ B, show that if you take an arbitrary element of A then it is always an element
of B. To prove that two sets are equal, show both A ⊆ B and B ⊆ A. You can also use set-theoretic
identities.

• A cardinality of a set is the number of elements in it. Two sets have the same cardinality if there is
a bijection between them. If the cardinality of a set is the same as the cardinality of N, the set is
called countable. If it is greater, then uncountable.

• Principle of inclusion-exclusion: The number of elements in A∪B, |A∪B| = |A|+ |B| − |A∩B|. In
general, add all odd-sized intersections and subtract all even-sized intersections.

• Boolean algebra: A set B with three operations +, · and ,̄ and special elements 0 and 1 such that
0 6= 1, and axioms of identity, complement, associativity and distributivity. Logic is a boolean algebra
with F being 0, T being 1, and ,̄+, · being ¬,∨,∧,respectively. Set theory is a boolean algebra with ∅
for 0, U for 1, and ,̄∪,∩ for ,̄+, ·. Boolean algebra is sound and complete: anything true is provable
(completeness) and anything provable is true (soundness).
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