

COMP 1002

Intro to Logic for Computer Scientists

Lecture 8

False premises

- An argument can still be valid when some of its premises are false.
 - Remember, false implies anything.
- Bertrand Russell: "If 2+2=5, then I am the pope"
 - Suppose 2+2=5
 - If 2+2=5, then 1=2 (subtract 3 from both sides).
 - So 1=2 (by modus ponens)
 - Me and the pope are two people.
 - Since 1=2, me and the pope are one person.
 - Therefore, I am the pope!

Natural deduction vs. Truth tables

- In this puzzle, it was faster to solve it using modus ponens (natural deduction method) than writing a truth table.
- But is it always better?
- The answer is...

Nobody knows!

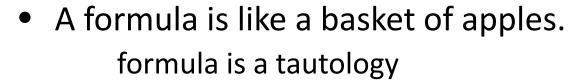
- It is a very closely related to the question of how fast can one check if something is a tautology.
 - And that's a million dollar question!

The million dollar question

- In English, known as "P vs. NP" problem
 - P stands for "polynomial time computable".
 - NP is "polynomial time checkable"
 - non-deterministic polynomial-time computable
 - Question: is everything efficiently checkable also efficiently computable?
- In Russian, called "perebor" problem.
 - "perebor" translates as "exhaustive search".
 - Question: is it always possible to avoid looking through nearly all potential solutions to find an answer?
 - Are there situations when exhaustive search is unavoidable?

The million dollar question

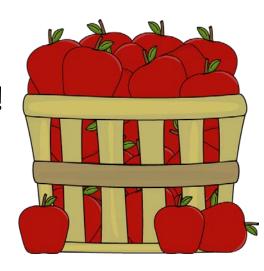
 NP-completeness: enough to answer for the problem of checking satisfiability (SAT)!

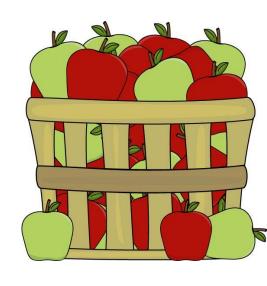


=

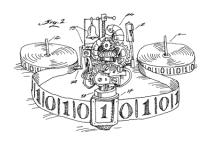
All apples in the basket are good.

- Can you check that all apples are good without looking at every single one?
- Can you do it for every possible basket of apples?
 - Smell test?





Automated provers



- How to make an automated prover which checks whether a formula is a tautology?
 - And so can check if an argument is valid, etc.
- Truth tables:
 - easy to program, but proofs are huge.
- Natural deduction:
 - proofs might be smaller than a truth table
 - Are they always? Good question...
 - even if there is a small proof, how can we find one quickly?
 - Nobody knows...

Resolution proofs

- Middle ground: use the resolution rule:
 - Basis for many practical provers (SAT solvers).
 - Used in verification, scheduling, etc...

Ignore order in an OR and remove duplicates.

Resolution proofs

- Rather than proving that F is a tautology, prove that $\neg F \equiv FALSE$. That is, a proof of F is a **refutation** of $\neg F$
 - To check that an argument is valid, refute AND of premises AND NOT conclusion.
- Last step of the resolution refutation of $\neg F$:
 - from x and $\neg x$ derive FALSE, for some variable x.
 - If you cannot derive anything new, then the formula is satisfiable.

$$(y \lor \neg z) \land (\neg y) \land (y \lor z)$$

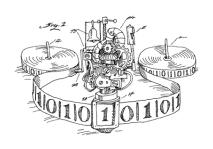
$$(\neg z) \qquad (z)$$

$$FALSE$$

CNF

- Resolution works best when the formula is of the special form: it is an AND of ORs of (possibly negated) variables (called literals).
- This form is called a **Conjunctive Normal Form**, or **CNF**.
 - $-(y \lor \neg z) \land (\neg y) \land (y \lor z)$ is a CNF
 - $-(x \lor \neg y \lor z)$ is a CNF. So is $(x \land \neg y \land z)$.
 - $-(x \lor \neg y \land z)$ is not a CNF
- An AND of CNF formulas is a CNF formula.
 - So if all premises are CNF and the negation of the conclusion is a CNF, then AND of premises AND NOT conclusion is a CNF.

CNF



- To convert a formula into a CNF.
 - Open up the implications to get ORs.
 - Get rid of double negations.
 - Convert $F \lor (G \land H)$ to $(F \lor G) \land (F \lor H)$.
- Example: $A \rightarrow B \land C$ $\equiv \neg A \lor B \land C$ $\equiv (\neg A \lor B) \land (\neg A \lor C)$
- In general, CNF can become quite big, especially when have ↔. There are tricks to avoid that...

Natural deduction

- A: this house is next to a lake.
- B: the treasure is in the kitchen
- C: The tree in front is elm
- D: the treasure is under the flagpole.
- E: The tree in the back is oak
- F: The treasure is in the garage
- If house is next to the lake then the treasure is not in the kitchen
- The house is next to the lake
- Therefore, the treasure is not in the kitchen.

- 1. If A then not B
- 2. If C then B
- 3. A
- 4. C or D
- 5. If E then F
- 6. Not B
- 7. Not C
- 8. D

Treasure hunt

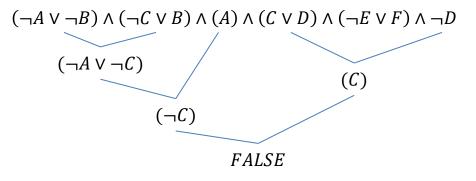
- If this house is next to a lake, then a treasure is not in the kitchen
- 2. If the tree in the font yard is an elm, then the treasure is in the kitchen.
- 3. This house is next to a lake
- 4. The tree in the front yard is an elm, or the treasure is buried under the flagpole
- 5. If the tree in the back yard is an oak, then the treasure is in the garage.
 - 1. $A \rightarrow \neg B$
 - $2. \quad C \rightarrow B$
 - 3. A
 - 4. C V D
 - 5. $E \rightarrow F$

- 1. $\neg A \lor \neg B$
- $2. \neg C \lor B$
- 3. A
- 4. C V D
- 5. $\neg E \lor F$

Conclusion: D

- A: this house is next to a lake.
- B: the treasure is in the kitchen
- C: The tree in front is elm
- D: the treasure is under the flagpole.
- E: The tree in the back is oak
- F: The treasure is in the garage

Check validity of the argument using resolution



Puzzle 8

- Suppose that nobody in our class carries more than 10 pens.
- There are 70 students in our class.

- Prove that there are at least 2 students in our class who carry the same number of pens.
 - In fact, there are at least 7 who do.

