

COMP 1002

Intro to Logic for Computer Scientists

Lecture 7

Proof vs. disproof

- To prove that something is (always) true:
 - Make sure it holds in every scenario
 - $\neg B \rightarrow \neg A$ is equivalent to $A \rightarrow B$, because

 $\neg B \to \neg A \equiv \neg \neg B \lor \neg A \equiv B \lor \neg A \equiv \neg A \lor B \equiv A \to B$

- So $(\neg B \rightarrow \neg A) \leftrightarrow (A \rightarrow B)$ is a tautology.
- I have classes every day that starts with T. I have classes on Tuesday and Thursday (and Monday, but that's irrelevant).
- Or assume it does not hold, and then get something strange as a consequence:
 - To show A is true, enough to show $\neg A \rightarrow FALSE$.
 - Suppose there are finitely many prime numbers. What divides the number that's a product of all primes +1?

Proof vs. disproof

- To disprove that something is always true, enough to give just one scenario where it is false (find a falsifying assignment).
 - To disprove that $A \rightarrow B \equiv B \rightarrow A$
 - Take A = true, B = false,
 - Then $A \rightarrow B$ is false, but $B \rightarrow A$ is true.
 - To disprove that $B \rightarrow A \equiv \neg (A \rightarrow B)$
 - Take A=true, B=true
 - Then $B \to A$ is true, but $\neg(A \to B)$ is false.
 - I have classes every day! No, you don't have classes on Saturday
 - Women don't do Computer Science! Me?

 In the back of an old cupboard you discover a note signed by a pirate famous for his bizarre sense of humour and love of logical puzzles. In the note he wrote that he had hidden a treasure somewhere on the property. He listed 5 true statements and challenged the reader to use them to figure out the location of the treasure

- 1. If this house is next to a lake, then a treasure is not in the kitchen
- 2. If the tree in the font yard is an elm, then the treasure is in the kitchen
- 3. This house is next to a lake
- 4. The tree in the front yard is an elm, or the treasure is buried under the flagpole
- 5. If the tree in the back yard is an oak, then the treasure is in the garage.

- 1. If this house is next to a lake, then a treasure is not in the kitchen
- 2. If the tree in the font yard is an elm, then the treasure is in the kitchen.
- 3. This house is next to a lake
- 4. The tree in the front yard is an elm, or the treasure is buried under the flagpole
- 5. If the tree in the back yard is an oak, then the treasure is in the garage.

Too many variables for a nice truth table...

- A: this house is next to a lake.
- B: the treasure is in the kitchen
- C: The tree in front is elm
- D: the treasure is under the flagpole.
- E: The tree in the back is oak
- F: The treasure is in the garage

1.	If A then not B	1.	$A \rightarrow \neg B$
2.	If C then B		$C \rightarrow B$
3.	A	3.	А
4.	C or D	4.	CVD
5.	If E then F	5.	$E \rightarrow F$

Natural deduction

- A: this house is next to a lake.
- B: the treasure is in the kitchen
- C: The tree in front is elm
- D: the treasure is under the flagpole.
- E: The tree in the back is oak
- F: The treasure is in the garage
- If house is next to the lake then the treasure is not in the kitchen
- The house is next to the lake
- Therefore, the treasure is not in the kitchen.

- 1. If A then not B
- 2. If C then B
- 3. A
- 4. C or D
- 5. If E then F
- 6. Not B
- 7. Not C
- 8. D

Arguments and validity

- An **argument**, in logic, is a sequence of propositional statements.
 - Called argument form when statements are formulas involving variables.
- The last statement in the sequence is called the **conclusion**. All the rest are **premises**.
- An argument is **valid** if whenever all premises are true, the conclusion is also true.
 - So if premises are P_1, \ldots, P_n , and conclusion is P_{n+1} ,
 - then the argument is valid

 $- P_1 \wedge P_2 \wedge \cdots P_n \to P_{n+1} \text{ is a tautology}$

- If this house is next to a lake, then a treasure is not in the kitchen
- 2. If the tree in the font yard is an elm, then the treasure is in the kitchen
- 3. This is a like -
- 4. The tree in the front yard is an elm, or the treasure is buried under the flagpole
- 5. If the tree in the back yard is an oak, then the treasure is in the garage.
- 6. The treasure and the despole.

Arguments and validity

- Arguments are often written in this format:
 - Symbol : is pronounced "therefore"

•	If house is next to the lake then the	
	treasure is not in the kitchen	

- If x > 3, then x > 2If x > 2, then $x \neq 1$ x > 3
- The house is next to the lake

 $\therefore x \neq 1$

 $\therefore P_{n+1} \quad \stackrel{\text{$$$$: the treasure is not in}}{\text{the kitchen}}$

 P_1

 P_2

 P_n

Arguments and validity

• Valid argument: AND of premises → conclusion is a tautology

 If house is next to the lake then the treasure is not in the kitchen The house is next to the lake 	If $x > 3$, then $x > 2$ If $x > 2$, then $x \neq 1$ x > 3 $\therefore x \neq 1$	If $x > 3$, then $x > 2$ If $x > 2$, then $x \neq 1$ $x \neq 1$ $\therefore x > 3$
∴ the treasure is not in the kitchen Valid argument: $((p \rightarrow q) \land p \rightarrow q)$ is a tautology	Valid argument: $(p \rightarrow q) \land (q \rightarrow r) \land p \rightarrow r$ is a tautology	Invalid argument! $(p \rightarrow q) \land (q \rightarrow r) \land r \rightarrow p$ is a not a tautology! False when r is true, and p and q are both false.

Natural deduction

- A: this house is next to a lake.
- B: the treasure is in the kitchen
- C: The tree in front is elm
- D: the treasure is under the flagpole.
- E: The tree in the back is oak
- F: The treasure is in the garage
- If house is next to the lake then the treasure is not in the kitchen
- The house is next to the lake
- Therefore, the treasure is not in the kitchen.

- 1. If A then not B
- 2. If C then B
- 3. A
- 4. C or D
- 5. If E then F
- 6. Not B

8. D

How do we get the intermediate steps?

Rules of inference

- Just like we used equivalences to simplify a formula instead of writing truth tables
- Can apply tautologies of the form $F \rightarrow G$
 - so that if F is an AND of several formulas derived so far, then we get G, and add G to premises.
 - Such as $((p \rightarrow q) \land p) \rightarrow q$
- Keep going until we get the conclusion.

- The house is next to the lake
- Therefore, the treasure is not in the kitchen.
- Here, p is "the house is next to the lake", and q is "the treasure is not in the kitchen".

Modus ponens

- The main rule of inference, given by the tautology $(p \rightarrow q) \land p \rightarrow q$, is called **Modus Ponens**.
- If house is next to the lake then the treasure is not in the kitchen
- The house is next to the lake
- If Socrates is a man, then Socrates is mortal
- Socrates is a man

: Socrates is mortal

- If x > 2, then x ≠ 1
 x > 2
- $\therefore x \neq 1$

 \therefore the treasure is not in the kitchen

False premises

- An argument can still be valid when some of its premises are false.
 - Remember, false implies anything.
- Bertrand Russell: "If 2+2=5, then I am the pope"

Puzzle 7: can you see how to prove this?