COMP 1002

Intro to Logic for Computer Scientists

Lecture 6
Admin stuff

• First lab is tomorrow!
• Lab is posted: see the webpage.

– If you **do have a time conflict** at 11am:
 • Come to EN-1049
– If you **do not have a time conflict** at 11am:
 • Come to CS-1019
– Lab quizzes count as 25% part of your mark!
On a mystical island, there are two kinds of people: knights and knaves. Knights always tell the truth. Knaves always lie.

Puzzle 5: You hear a person from the island of knights and knaves say “if I am a knight, then it will rain tomorrow”. What can you conclude from this?
More on if..then..

• You see the following cards. Each has a letter on one side and a number on the other.

• Which cards do you need to turn to check that if a card has a J on it then it has a 5 on the other side?
Contrapositive

• Let $A \rightarrow B$ be an implication (if A then B).
 – If a card has a J on one side, it has 5 on the other.
• Its contrapositive is $\neg B \rightarrow \neg A$.
 – If a card does not have 5 on one side, then it cannot have J on the other.
• Contrapositive is equivalent to the original implication: $A \rightarrow B \equiv \neg B \rightarrow \neg A$.
 – This is why we need to check cards with numbers other than 5!
 – $\neg B \rightarrow \neg A \equiv \neg \neg B \lor \neg A
 \equiv B \lor \neg A \equiv \neg A \lor B$
Proof vs. disproof

• To prove that something is (always) true:
 – Make sure it holds in every scenario
 • \(\neg B \rightarrow \neg A \) is equivalent to \(A \rightarrow B \), because
 \[
 \neg B \rightarrow \neg A \equiv \neg B \lor \neg A \equiv B \lor \neg A \equiv \neg A \lor B \equiv A \rightarrow B
 \]
 • So \((\neg B \rightarrow \neg A) \iff (A \rightarrow B) \) is a tautology.

• I have classes every day that starts with T. I have classes on Tuesday and Thursday (and Monday, but that’s irrelevant).

• Or assume it does not hold, and then get something strange as a consequence:
 • To show A is true, enough to show \(\neg A \rightarrow FALSE \).
 • Suppose there are finitely many prime numbers. What divides the number that’s a product of all primes +1?
Converse and inverse

• Let $A \rightarrow B$ be an implication (if A then B).
• Its converse is $B \rightarrow A$
 – If a card has 5 on one side, then it has J on the other.
• Converse is not equivalent to the original implication!
 – For $A = true, B = false, A \rightarrow B$ is false, $B \rightarrow A$ is true.
• Converse is not equivalent to the negation of $A \rightarrow B$
 – $\neg (A \rightarrow B) \equiv A \land \neg B$.
 – For $A=true, B=true, B \rightarrow A$ is true, but $\neg (A \rightarrow B)$ is false.
• Converse is equivalent to the inverse $\neg A \rightarrow \neg B$ of $A \rightarrow B$
 – If a card does not have J on one side, it cannot have 5 on the other.
Contrapositive vs. Converse

• “If a person is carrying a weapon, then airport metal detector will ring”.
 – Same as “If the airport metal detector does not ring, then the person is not carrying a weapon”.
 – Not the same as: “If the airport metal detector rings, then the person is carrying a weapon.”

• “If the person is sick, then the test is positive”.

• “If he is a murderer, his fingerprints are on the knife”.

Contrapositive vs. Converse

• Let A = “person carries a weapon”, B = “metal detector rings.

• In statistics, talk about **sensitivity** vs. **specificity**:

 – **Sensitivity**: percentage of correct positives

 • probability that $A \rightarrow B$
 • that if a person has a weapon, then detector rings:
 • that if the person is sick, then the test is positive
 • 100% sensitive test: catches all weapons/sick (maybe some innocent/healthy, too)

 – **Specificity**: percentage of correct negatives

 • Probability that $B \rightarrow A$
 • that if the detector rings, then the person has a weapon
 • that if the person is not sick, then the test is negative
 • 100% specific test: catches only weapons/sick (no innocent/healthy, but maybe not all weapons/sick)
If and only if

• $A \leftrightarrow B$ ("A if and only if B") is true exactly when both the implication $A \rightarrow B$ and its converse $B \rightarrow A$ (equivalently, inverse $\neg A \rightarrow \neg B$) are true
 – Come to EN-1049 for the lab if and only if you have a time conflict at 11am.
 – If you have a time conflict at 11am,
 • then come to EN-1049
 – And if you don’t have a time conflict at 11am,
 • then come to CS-1019 (not to EN-1049)
Proof vs. disproof

• To disprove that something is always true, enough to give just one scenario where it is false (find a falsifying assignment).

 – To disprove that $A \to B \equiv B \to A$
 • Take $A = true, B = false$,
 • Then $A \to B$ is false, but $B \to A$ is true.

 – To disprove that $B \to A \equiv \neg (A \to B)$
 • Take $A=\text{true}, B=\text{true}$
 • Then $B \to A$ is true, but $\neg (A \to B)$ is false.

 – I have classes every day! – No, you don’t have classes on Saturday

 – Women don’t do Computer Science! – Me?
Treasure hunt

• In the back of an old cupboard you discover a note signed by a pirate famous for his bizarre sense of humor and love of logical puzzles. In the note he wrote that he had hidden a treasure somewhere on the property. He listed 5 true statements and challenged the reader to use them to figure out the location of the treasure
Treasure hunt

1. If this house is next to a lake, then a treasure is not in the kitchen
2. If the tree in the font yard is an elm, then the treasure is in the kitchen
3. This house is next to a lake
4. The tree in the front yard is an elm, or the treasure is buried under the flagpole
5. If the tree in the back yard is an oak, then the treasure is in the garage.