

COMP 1002

Intro to Logic for Computer Scientists

Lecture 5

Admin stuff

- First lab Jan 18th (this Wednesday).
- Lab is posted: see the webpage.

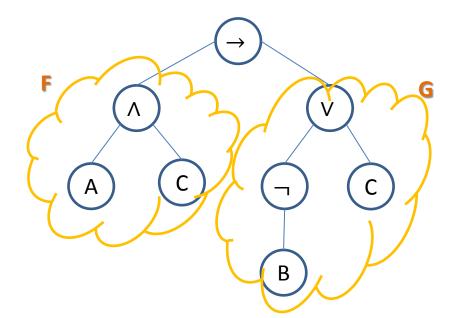
- If you do have a time conflict at 11am:
 - Come to EN-1049
- If you do not have a time conflict at 11am:
 - Come to CS-1019
- Lab quizzes count as 25% part of your mark!

Puzzle 4

- I like one of the shapes.
 I like one of the colours.
 I like a figure if it has either my favourite shape or my favourite colour.
- I like . What can you say about the rest?
- I might like triangles, or blue things, or both.
- There is one figure I don't like, but not enough information to say which one it is. I might still like

Simplifying formulas

- $A \wedge C \rightarrow (\neg B \vee C)$
 - Order of precedence: \rightarrow is the outermost, that is, the formula is of the form $F \rightarrow G$, where F is $(A \land C)$, and G is $(\neg B \lor C)$.



Simplifying formulas

- $A \wedge C \rightarrow (\neg B \vee C)$
 - $By(F \to G) \equiv (\neg F \lor G)$
 - equivalent to $\neg(A \land C) \lor (\neg B \lor C)$
 - De Morgan's law
 - $\neg (A \land C)$ is equivalent to $(\neg A \lor \neg C)$
 - So the whole formula becomes
 - $\neg A \lor \neg C \lor \neg B \lor C$
 - But $\neg C \lor C$ is always true!
 - So the whole formula is a tautology.

More useful equivalences

- For any formulas A, B, C:
 - $TRUE \lor A \equiv TRUE.$
 - $-FALSE \lor A \equiv A.$
 - $-\operatorname{AV} A \equiv A \wedge A \equiv A$

- $TRUE \land A \equiv A$ $FALSE \land A \equiv FALSE$
- Also, like in arithmetic (with V as +, ∧ as *)
 - $-A \lor B \equiv B \lor A$ and $(A \lor B) \lor C \equiv A \lor (B \lor C)$
 - Same holds for \wedge .
 - Also, $(A \lor B) \land C \equiv (A \land C) \lor (B \land C)$
- And unlike arithmetic

 $-(A \land B) \lor C \equiv (A \lor C) \land (B \lor C)$

Longer example of negation

 Start with the outermost connective and keep applying de Morgan's laws and double negation. Stop when all negations are on variables.

•
$$\neg ((A \lor \neg B) \rightarrow (\neg A \land C))$$

- $(A \lor \neg B) \land \neg (\neg A \land C)$ (negating \rightarrow)
- $(A \lor \neg B) \land (\neg \neg A \lor \neg C)$ (de Morgan)
- $(A \lor \neg B) \land (A \lor \neg C)$ (removing $\neg \neg$)
- Can now simplify further, if we want to.
 - $A \lor (\neg B \land \neg C)$ (taking A outside the parentheses)

 On a mystical island, there are two kinds of people: knights and knaves. Knights always tell the truth. Knaves always lie.

 Puzzle 5: You hear a person from the island of knights and knaves say "if I am a knight, then it will rain tomorrow". What can you conclude from this?