COMP 1002

Logic for Computer Scientists

Lecture 31

i
E’-l-;i_

Admin stuff

e Assignment 5 is posted.
— Postponed till Monday April 3", 7pm.

 Next week:
— “Mini-lab” on Monday, April 3™ (+ finishing up).
e Instead of the lecture: in EN-2007, at 1pm
— Review for the final exam on Tuesday, April 4t.

— Practice exam on Wednesday, April 5
* 9am-1l1lam in CS-1019.

e Please do the CEQs!

— Especially the comments!

— As this is the first time we run this course, | would love to know
what worked and what did not, and what should be done
differently next time.

Tower of Hanoi game

e Rules of the game:
— Start with all disks on the first peg.

— At any step, can move a disk to another peg, as long as it is
not placed on top of a smaller disk.

— Goal: move the whole tower onto the second peg.

e Question: how many steps are needed to move the
tower of 8 disks? How about n disks?

Tower of Hanoi game

¥ '
% 3
b
il 1
. o

* Rules of the game:
— Start with all disks on the first peg.
— At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.
— Goal: move the whole tower onto the second peg.

 Question: how many steps are needed to move the tower of 8 disks? How about n disks?

e Let us call the number of moves needed to transfer n disks H(n).
— Names of pegs do not matter: from any peg i to any pegj # i would take the same number of

steps.
e Basis: only one disk can be transferred in one step.
— SoH(1)=1

* Recursive step:
— suppose we have n-1 disks. To transfer them all to peg 2, need H(n — 1) number of steps.
— To transfer the remaining disk to peg 3, 1 step.
— To transfer n-1 disks from peg 2 to peg 3 need H(n-1) steps again.
— So H(n)=2H(n-1)+1 (recurrence).

 Closed form: H(n)=2" — 1.

KR

puacele
Entology] ==L

Recurrence relations

e Recurrence: an equation that defines an nt"

element in a sequence in terms of one or more of
previous terms.
— H(n) = 2H(n-1)+1
— F(n) = F(n-1)+F(n-2)
— T(n) = aT(n-1)

A closed form of a recurrence relation is an
expression that defines an nt" element in a
sequence in terms of n directly.

— Often use recurrence relations and their closed forms
to describe performance of (especially recursive)
algorithms.

(oo
£
s

e

Closed forms of some sequences

e Arithmetic progression:
— Sequence: ¢,c+d,c+ 2d,c+ 3d,...,c +nd, ..

— Recursive definition:
e Basis: sy = ¢, forsome ce R
* Recurrence: s;,.1 = s, +d, where d € R is a fixed number.

— Closed form: s, =c + nd
* Closed forms are very useful for analysis of recursive programs, etc.
* (Geometric progression:
— Sequence: c,cr,cr?, cr
— Recursive definition:

e Basis: s = ¢, forsomece R
* Recurrence: s;,+1 = Sy ' 7, Where r€ R is a fixed number.

— Closed form: s, =c-r"

3 n
, 0, CT 7, ...

Closed form for Tower of Hanoi

e Solving the recurrence H(n)=2H(n-1)+1
— Hn)=2Hn-1)+1
=2QHn-2)+1)+1=2°Hn—-2)+2+1
=2Hmn—-3)+2°+2+1
=2*Hn—-4)+23+224+2+1..
— Ingeneral, H(n) = 22t =2" -1
* Proof by induction.

e Or by noticing that a binary number 111...1 plus 1 gives a binary number
10000...0

— So the function defined by H(n) grows exponentially
e As a function of n.
e Solving recurrences in general might be tricky.

— However, when the recurrence is of the form T(n)=a T(n/b)+f(n),
there is a general method to estimate the growth rate of a function
defined by the recurrence

— Called the Master Theorem for recurrences.

W s

W
tAl NE

W Function growth.

e What does it mean to “grow” at a certain speed?
How to compare growth rate of two functions?
— s f(n)=100n larger than g(n) = n??
e For small n, yes. For n > 100, not so much...

— As usually program take longer on larger inputs,
performance on larger inputs matters more.

— Constant factors don’t matter that much.
 So to compare two functions, check which
becomes larger as n increases (to infinity).

— lgnoring constant factors, as they don’t contribute to
the rate of growth.

g!‘\ V4
LY

/ ;.:" Sired I_,-""' o .
' / il I 17

P Function growth.

* How to estimate the rate of growth?
— Plotting a graph?

Y/
LY

* Not quite conclusive:

— How do you know what they will do past the
graphed part?

el

(o

O-notation.

e We say that f(n) grows at least as fast as g(n) if
— There is a value ny such that after n,, g(n) is always at most as large as f(n)
e More precisely, compare absolute values: |g(n)| vs. |f(n)]
— Moreover, ignore constant factors:
e So if two functions only differ by a constant factor, consider them having the same growth rate.
— Denote set of all functions growing at most as fast as g(n) by O(g(n))
e Big-Oh of g(n).
e g(n)is an asymptotic upper bound for f(n).

* When both f(n) € O(g(n)) and g(n) € O(f(n)), write f(n) € ©(g(n))
— f(n) is in big-Theta of g(n)).

 More generally, for real-valued functions f(x) and g(x),

f(x) € O(g(x)) iff

Jxo ERZ2IcER Vx> x, |[f(X)| < c-|gx)]

* Thatis, from some point x, on, |f(x)|is bounded from above by |g(x)| (up
to a constant factor).

e Usually in CS have functions N — R3Y, so use n for x and ignore | |.

" s
i

/ L AL

L O-notation.
f(n) € O(g(n)) iff

N 1

Any, ENIceR™® vn=n, f(n) <c-gn)
f(n) =n? g(n) = 2™

— Take c=1, ny = 4.
— Foreveryn =ny, f(n) < gn)
* Proof by induction.
— Son?€0(2M)
f(n) =n? g(n) = 10n.
— Take arbitrary c and look at n? < ¢ - 10n.

— No matter what c is, whenn > ¢ - 10, n? >
c-10n

— Son? ¢ 0(10n).
e f(n) =n*+100n, g(n) = 10n°.
| — Here, f(n) € 0(g(n)) and also g(n) € 0(f(n))

e * Sof(n) € 0(g(n))
You will see a lot of O-notation e f(m) € 0(g(n)): c=20and/orn, = 100 work.
in COMP 2002. e gln) e O(f(n)): Take c=10, n, = 1.

— Canignore not only constants, but also all except
the leading term in the expression.

— If |
— If |

&.8.d

Master theorem =S8 =
for solving recurrences

e leta,b,c,d € Rsuchthata>1, b>2,c > 0,
d > 0, and let f(n) € O(n°)

e Let T(n) be the following recurrence relation:
— Base: T(1)=d

— Recurrence: T(n) =aT (ED + f(n)
 Then the growth rate of T(n) is:

ogpa<ct
ogpa =c t

— If]

ogpa > c t

hen T(n) € @(f(n))
nen T(n) € O(f(n)logn)

nen T(n) € G)(nlogb a)

More to come...

1 2 wh, g
tf .:j.:

* You will see a lot of algorithm analysis and use of the .
concepts we developed in COMP 2002 and beyond. g

— Logic, sets, relations and graphs for specification, modeling
problems and describing what you are doing.

— Logic, induction and models of computation for proving
program correctness and analysis of problem complexity.

— Recursive definitions of algorithms, counting and probability for
algorithm performance and problem solving.

e With the million dollar problem rearing its head every now and then

~ K ; =

	COMP 1002��Logic for Computer Scientists�
	Admin stuff
	Tower of Hanoi game
	Tower of Hanoi game
	Recurrence relations
	Closed forms of some sequences
	Closed form for Tower of Hanoi
	Function growth.
	Function growth.
	O-notation.
	O-notation.
	Master theorem �for solving recurrences
	More to come…

