
 
Lecture 31 

COMP 1002 
 

Logic for Computer Scientists 
 

B J 2 5 



Admin stuff 
• Assignment 5 is  posted.   

– Postponed till Monday April 3rd, 7pm.  
 
• Next week:  

– “Mini-lab” on Monday, April  3rd  (+ finishing up). 
• Instead of the lecture: in  EN-2007, at 1pm 

– Review for the final exam on Tuesday, April 4th.  
– Practice exam on Wednesday, April 5th 

• 9am-11am in CS-1019.  
 

• Please do the CEQs!  
– Especially the comments!  
– As this is the first time we run this course,  I would love to know 

what worked and what did not, and what should be done 
differently next time.   



Tower of Hanoi game 

• Rules of the game:  
– Start with all disks on the first peg.  
– At any step, can move a disk to another peg, as long as it is 

not placed on top of a smaller disk.  
– Goal:  move the whole tower onto the second peg.  

• Question:  how many steps are needed to move the 
tower of 8 disks? How about n disks?    



Tower of Hanoi game 

• Rules of the game:  
– Start with all disks on the first peg.  
– At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.  
– Goal:  move the whole tower onto the second peg.  

• Question:  how many steps are needed to move the tower of 8 disks? How about n disks?    

• Let us call the number of moves needed to transfer n disks H(n).  
– Names of pegs do not matter:  from any peg 𝑖𝑖 to any peg 𝑗𝑗 ≠ 𝑖𝑖  would take the same number of 

steps. 
• Basis:  only one disk can be transferred in one step.  

– So H(1) = 1  
• Recursive step:   

– suppose we have n-1 disks.  To transfer them all to peg 2, need 𝐻𝐻(𝑛𝑛 − 1) number of steps.   
– To transfer the remaining disk to peg 3, 1 step.  
– To transfer n-1 disks from peg 2 to peg 3 need  H(n-1) steps again.  
– So  H(n) = 2H(n-1)+1   (recurrence).  

• Closed form:  H(n) = 2𝑛𝑛 − 1.   



Recurrence relations 

• Recurrence:  an equation that defines an 𝑛𝑛𝑡𝑡𝑡 
element in a sequence in terms of one or more of 
previous terms.  
– H(n) = 2H(n-1)+1 
– F(n) = F(n-1)+F(n-2)  
– T(n) = aT(n-1)  

•  A closed form of a recurrence relation is an 
expression that defines an 𝑛𝑛𝑡𝑡𝑡 element in a 
sequence in terms of 𝑛𝑛 directly.  
– Often use recurrence relations and their closed forms 

to describe performance of (especially recursive) 
algorithms. 

 
 

 
 



Closed forms of some sequences 

• Arithmetic progression:  
– Sequence:  𝑐𝑐, 𝑐𝑐 + 𝑑𝑑, 𝑐𝑐 + 2𝑑𝑑, 𝑐𝑐 + 3𝑑𝑑, … , 𝑐𝑐 + 𝑛𝑛𝑑𝑑, …  
– Recursive definition:  

• Basis:  𝑠𝑠0 = c,  for some c∈ ℝ 
• Recurrence: 𝑠𝑠𝑛𝑛+1 = sn + d, where 𝑑𝑑 ∈ ℝ is a fixed number.  

– Closed form:  𝑠𝑠𝑛𝑛 = 𝑐𝑐 + 𝑛𝑛𝑑𝑑    
• Closed forms are very useful for analysis of recursive programs, etc. 

• Geometric progression:  
– Sequence:  𝑐𝑐, 𝑐𝑐𝑐𝑐, 𝑐𝑐𝑐𝑐2, 𝑐𝑐𝑐𝑐3, … , 𝑐𝑐𝑐𝑐𝑛𝑛, …  
– Recursive definition: 

• Basis: 𝑠𝑠0 = c,  for some c∈ ℝ 
• Recurrence: 𝑠𝑠𝑛𝑛+1 = sn ⋅ 𝑐𝑐, where r∈ ℝ is a fixed number.  

– Closed form:  𝑠𝑠𝑛𝑛 = 𝑐𝑐 ⋅ 𝑐𝑐𝑛𝑛 
 

 
 
 



• Solving  the recurrence H(n)=2H(n-1)+1  
– H(n) = 2⋅ 𝐻𝐻 𝑛𝑛 − 1 + 1 

 = 2 2𝐻𝐻 𝑛𝑛 − 2 + 1 + 1  = 22𝐻𝐻 𝑛𝑛 − 2 + 2 + 1 
 = 23𝐻𝐻 𝑛𝑛 − 3 + 22 + 2 + 1   
 = 24 𝐻𝐻 𝑛𝑛 − 4 + 23 + 22 + 2 + 1 …  

– In general,  𝐻𝐻 𝑛𝑛 = Σ𝑖𝑖=0𝑛𝑛−1 2𝑖𝑖 = 2𝑛𝑛 − 1 
• Proof by induction.  
• Or by noticing that a binary number 111...1 plus 1 gives a binary number 

10000…0   
– So the function defined by H(n) grows exponentially 

• As a function of n.  
• Solving recurrences in general might be tricky.  

– However, when the recurrence is of the form T(n)=a T(n/b)+f(n), 
there is a  general method to estimate the growth rate of a function 
defined by the recurrence 

– Called the Master Theorem for recurrences.  
 
 

Closed form for Tower of Hanoi 



Function growth.  

• What does it mean to “grow” at a certain speed? 
How to compare growth rate of two functions? 
– Is f(n)=100n larger than 𝑔𝑔 𝑛𝑛 = 𝑛𝑛2? 

• For small n, yes. For n > 100, not so much…  

– As usually program take longer on larger inputs, 
performance on larger inputs matters more.   

– Constant factors don’t matter that much.  

• So to compare two functions, check which 
becomes larger as n increases (to infinity).  
– Ignoring constant factors, as they don’t contribute to 

the rate of growth.  



Function growth.  

• How to estimate the rate of growth?  
– Plotting a graph?  

 
 
 
 
 

• Not quite conclusive: 
– How do you know what they will do past the 

graphed part?   



• We say that f(n) grows at least as fast as g(n) if 
– There is a value 𝑛𝑛0 such that after 𝑛𝑛0,  𝑔𝑔 𝑛𝑛  is always at most as large as 𝑓𝑓 𝑛𝑛  

• More precisely, compare absolute values: |g(n)| vs. |f(n)| 
– Moreover, ignore constant factors:  

• So if two functions only differ by a constant factor, consider them having the same growth rate. 
– Denote set of all functions growing at most as fast as 𝑔𝑔 𝑛𝑛  by 𝑶𝑶 𝒈𝒈 𝒏𝒏  

• Big-Oh of g(n).   
• g(n) is an asymptotic upper bound for f(n).  
• When both 𝑓𝑓 𝑛𝑛 ∈ 𝑂𝑂 𝑔𝑔 𝑛𝑛  and 𝑔𝑔 𝑛𝑛 ∈ 𝑂𝑂 𝑓𝑓 𝑛𝑛 , write  𝑓𝑓 𝑛𝑛 ∈ Θ(𝑔𝑔 𝑛𝑛 )   

– f(n) is in big-Theta of g(n)).   

 
• More generally, for real-valued functions f(x) and g(x),   
      

         
 
 

 
• That is,  from some point 𝑥𝑥0  on,  |𝑓𝑓 𝑥𝑥 | is bounded from above by |g(x)| (up 

to a constant factor).  
• Usually in CS  have functions  ℕ → ℝ≥0, so use 𝑛𝑛 for 𝑥𝑥 and ignore | |.  

 

𝑓𝑓 𝑥𝑥 ∈ 𝑂𝑂 𝑔𝑔 𝑥𝑥  iff  
 

∃ 𝑥𝑥0 ∈ ℝ≥0 ∃𝑐𝑐 ∈ ℝ>0  ∀𝑥𝑥 ≥ 𝑥𝑥0  𝑓𝑓 𝑥𝑥 ≤ 𝑐𝑐 ⋅ 𝑔𝑔 𝑥𝑥  

O-notation.  



O-notation.  

• 𝑓𝑓 𝑛𝑛 = 𝑛𝑛2, 𝑔𝑔 𝑛𝑛 = 2𝑛𝑛.  
– Take c=1, 𝑛𝑛0 = 4.  
– For every 𝑛𝑛 ≥ 𝑛𝑛0, 𝑓𝑓 𝑛𝑛 ≤ 𝑔𝑔 𝑛𝑛   

• Proof by induction.  
– So n2 ∈ 𝑂𝑂 2𝑛𝑛  

• 𝑓𝑓 𝑛𝑛 = 𝑛𝑛2, 𝑔𝑔 𝑛𝑛 = 10𝑛𝑛. 
– Take arbitrary 𝑐𝑐 and  look at 𝑛𝑛2 ≤ 𝑐𝑐 ⋅ 10𝑛𝑛.  
– No matter what 𝑐𝑐 is, when 𝑛𝑛 > 𝑐𝑐 ⋅ 10,  𝑛𝑛2 ≥ 

𝑐𝑐 ⋅ 10𝑛𝑛  
– So 𝑛𝑛2 ∉ 𝑂𝑂 10𝑛𝑛 .  

• 𝑓𝑓 𝑛𝑛 = 𝑛𝑛2 + 100𝑛𝑛, 𝑔𝑔 𝑛𝑛 = 10𝑛𝑛2. 
– Here, 𝑓𝑓 𝑛𝑛 ∈ 𝑂𝑂 𝑔𝑔 𝑛𝑛  and also 𝑔𝑔 𝑛𝑛 ∈ 𝑂𝑂(𝑓𝑓 𝑛𝑛 ) 

• So 𝑓𝑓 𝑛𝑛 ∈ Θ(𝑔𝑔 𝑛𝑛 )   
• 𝑓𝑓 𝑛𝑛 ∈ 𝑂𝑂 𝑔𝑔 𝑛𝑛 :   c = 20 and/or 𝑛𝑛0 = 100 work.  
• 𝑔𝑔 𝑛𝑛 ∈ 𝑂𝑂 𝑓𝑓 𝑛𝑛 :   Take c=10, 𝑛𝑛0 = 1.  

– Can ignore not only constants, but also all except 
the leading term in the expression.  

 
 

 
 

 

𝑓𝑓 𝑛𝑛 ∈ 𝑂𝑂 𝑔𝑔 𝑛𝑛  iff  
 

∃ 𝑛𝑛0 ∈ ℕ ∃𝑐𝑐 ∈ ℝ>0  ∀𝑛𝑛 ≥ 𝑛𝑛0  𝑓𝑓 𝑛𝑛 ≤ 𝑐𝑐 ⋅ 𝑔𝑔(𝑛𝑛) 

You will see a lot of O-notation 
in COMP 2002. 
 



• Let 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ ℝ such that 𝑎𝑎 ≥ 1, 𝑏𝑏 ≥ 2, 𝑐𝑐 > 0,
𝑑𝑑 ≥ 0,  and let f(n) ∈ Θ 𝑛𝑛𝑐𝑐   

• Let T(n) be the following recurrence relation: 
– Base:  T(1) = d 

– Recurrence:  𝑇𝑇 𝑛𝑛 = 𝑎𝑎 𝑇𝑇 𝑛𝑛
𝑏𝑏

+ 𝑓𝑓(𝑛𝑛) 

• Then the growth rate of T(n) is: 
– If log𝑏𝑏𝑎𝑎 < 𝑐𝑐  then T 𝑛𝑛 ∈ Θ 𝑓𝑓 𝑛𝑛  
– If log𝑏𝑏𝑎𝑎 = 𝑐𝑐  then T 𝑛𝑛 ∈ Θ 𝑓𝑓 𝑛𝑛 log 𝑛𝑛  
– If log𝑏𝑏𝑎𝑎 > 𝑐𝑐  then T 𝑛𝑛 ∈ Θ 𝑛𝑛log𝑏𝑏 𝑎𝑎  

 
 
 
 

 

Master theorem  
for solving recurrences 



More to come…  

• You will see a lot of algorithm analysis and use of the 
concepts we developed in COMP 2002 and beyond.  
– Logic, sets, relations and graphs  for specification, modeling 

problems  and describing what you are doing.   
– Logic, induction and models of computation for  proving 

program correctness and analysis of  problem complexity.    
– Recursive definitions of algorithms, counting and probability for 

algorithm performance and problem solving.  
• With the million dollar problem rearing its head every now and then 

 
 


	COMP 1002��Logic for Computer Scientists�
	Admin stuff
	Tower of Hanoi game
	Tower of Hanoi game
	Recurrence relations
	Closed forms of some sequences
	Closed form for Tower of Hanoi
	Function growth. 
	Function growth. 
	O-notation. 
	O-notation. 
	Master theorem �for solving recurrences
	More to come… 

