COMP 1002

Logic for Computer Scientists

Lecture 31
Admin stuff

• Assignment 5 is posted.
 – Postponed till Monday April 3rd, 7pm.

• Next week:
 – “Mini-lab” on Monday, April 3rd (+ finishing up).
 • Instead of the lecture: in EN-2007, at 1pm
 – Review for the final exam on Tuesday, April 4th.
 – Practice exam on Wednesday, April 5th
 • 9am-11am in CS-1019.

• Please do the CEQs!
 – Especially the comments!
 – As this is the first time we run this course, I would love to know what worked and what did not, and what should be done differently next time.
Tower of Hanoi game

• Rules of the game:
 – Start with all disks on the first peg.
 – At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.
 – Goal: move the whole tower onto the second peg.

• Question: how many steps are needed to move the tower of 8 disks? How about n disks?
Tower of Hanoi game

- Rules of the game:
 - Start with all disks on the first peg.
 - At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.
 - Goal: move the whole tower onto the second peg.

- Question: how many steps are needed to move the tower of 8 disks? How about n disks?

- Let us call the number of moves needed to transfer n disks $H(n)$.
 - Names of pegs do not matter: from any peg i to any peg $j \neq i$ would take the same number of steps.

- Basis: only one disk can be transferred in one step.
 - So $H(1) = 1$

- Recursive step:
 - suppose we have $n-1$ disks. To transfer them all to peg 2, need $H(n - 1)$ number of steps.
 - To transfer the remaining disk to peg 3, 1 step.
 - To transfer $n-1$ disks from peg 2 to peg 3 need $H(n-1)$ steps again.
 - So $H(n) = 2H(n-1)+1$ (recurrence).

- Closed form: $H(n) = 2^n - 1$.
Recurrence relations

• **Recurrence:** an equation that defines an n^{th} element in a sequence in terms of one or more of previous terms.
 - $H(n) = 2H(n-1)+1$
 - $F(n) = F(n-1)+F(n-2)$
 - $T(n) = aT(n-1)$

• A **closed form** of a recurrence relation is an expression that defines an n^{th} element in a sequence in terms of n directly.
 - Often use recurrence relations and their closed forms to describe performance of (especially recursive) algorithms.
Closed forms of some sequences

• Arithmetic progression:
 – Sequence: \(c, c + d, c + 2d, c + 3d, \ldots, c + nd, \ldots \)
 – Recursive definition:
 • Basis: \(s_0 = c \), for some \(c \in \mathbb{R} \)
 • Recurrence: \(s_{n+1} = s_n + d \), where \(d \in \mathbb{R} \) is a fixed number.
 – Closed form: \(s_n = c + nd \)
 • Closed forms are very useful for analysis of recursive programs, etc.

• Geometric progression:
 – Sequence: \(c, cr, cr^2, cr^3, \ldots, cr^n, \ldots \)
 – Recursive definition:
 • Basis: \(s_0 = c \), for some \(c \in \mathbb{R} \)
 • Recurrence: \(s_{n+1} = s_n \cdot r \), where \(r \in \mathbb{R} \) is a fixed number.
 – Closed form: \(s_n = c \cdot r^n \)
Closed form for Tower of Hanoi

• Solving the recurrence $H(n) = 2H(n-1) + 1$
 – $H(n) = 2 \cdot H(n - 1) + 1$
 – $= 2(2H(n - 2) + 1) + 1 = 2^2H(n - 2) + 2 + 1$
 – $= 2^3H(n - 3) + 2^2 + 2 + 1$
 – $= 2^4H(n - 4) + 2^3 + 2^2 + 2 + 1 \ldots$
 – In general, $H(n) = \sum_{i=0}^{n-1} 2^i = 2^n - 1$
 • Proof by induction.
 • Or by noticing that a binary number 111...1 plus 1 gives a binary number 10000...0
 – So the function defined by $H(n)$ grows exponentially
 • As a function of n.

• Solving recurrences in general might be tricky.
 – However, when the recurrence is of the form $T(n) = aT(n/b) + f(n)$, there is a general method to estimate the growth rate of a function defined by the recurrence
 – Called the Master Theorem for recurrences.
Function growth.

• What does it mean to “grow” at a certain speed? How to compare growth rate of two functions?
 – Is \(f(n) = 100n \) larger than \(g(n) = n^2 \)?
 • For small \(n \), yes. For \(n > 100 \), not so much...
 – As usually program take longer on larger inputs, performance on larger inputs matters more.
 – Constant factors don’t matter that much.

• So to compare two functions, check which becomes larger as \(n \) increases (to infinity).
 – Ignoring constant factors, as they don’t contribute to the rate of growth.
Function growth.

• How to estimate the rate of growth?
 – Plotting a graph?

• Not quite conclusive:
 – How do you know what they will do past the graphed part?
O-notation.

• We say that \(f(n) \) grows at least as fast as \(g(n) \) if
 – There is a value \(n_0 \) such that after \(n_0 \), \(g(n) \) is always at most as large as \(f(n) \)
 • More precisely, compare absolute values: \(|g(n)| \) vs. \(|f(n)| \)
 – Moreover, ignore constant factors:
 • So if two functions only differ by a constant factor, consider them having the same growth rate.
 – Denote set of all functions growing at most as fast as \(g(n) \) by \(O(g(n)) \)
 • Big-Oh of \(g(n) \).
 • \(g(n) \) is an asymptotic upper bound for \(f(n) \).
 • When both \(f(n) \in O(g(n)) \) and \(g(n) \in O(f(n)) \), write \(f(n) \in \Theta(g(n)) \)
 – \(f(n) \) is in big-Theta of \(g(n) \).

• More generally, for real-valued functions \(f(x) \) and \(g(x) \),

\[
f(x) \in O(g(x)) \iff \exists \ x_0 \in \mathbb{R}^\geq 0 \ \exists \ c \in \mathbb{R}^>0 \ \forall \ x \geq x_0 \ |f(x)| \leq c \cdot |g(x)|
\]

• That is, from some point \(x_0 \) on, \(|f(x)| \) is bounded from above by \(|g(x)| \) (up to a constant factor).
• Usually in CS have functions \(\mathbb{N} \to \mathbb{R}^\geq 0 \), so use \(n \) for \(x \) and ignore \(| | \).
O-notation.

\[f(n) \in O(g(n)) \text{ iff } \exists n_0 \in \mathbb{N} \exists c \in \mathbb{R}^+ \forall n \geq n_0 \ f(n) \leq c \cdot g(n) \]

- \(f(n) = n^2, g(n) = 2^n \)
 - Take \(c=1, n_0 = 4 \).
 - For every \(n \geq n_0, f(n) \leq g(n) \)
 - Proof by induction.
 - So \(n^2 \in O(2^n) \)
- \(f(n) = n^2, g(n) = 10n \)
 - Take arbitrary \(c \) and look at \(n^2 \leq c \cdot 10n \).
 - No matter what \(c \) is, when \(n > c \cdot 10, n^2 \geq c \cdot 10n \)
 - So \(n^2 \notin O(10n) \).
- \(f(n) = n^2 + 100n, g(n) = 10n^2 \)
 - Here, \(f(n) \in O(g(n)) \) and also \(g(n) \in O(f(n)) \)
 - So \(f(n) \in \Theta(g(n)) \)
 - \(f(n) \in O(g(n)) \): \(c = 20 \) and/or \(n_0 = 100 \) work.
 - \(g(n) \in O(f(n)) \): Take \(c=10, n_0 = 1 \).
 - Can ignore not only constants, but also all except the leading term in the expression.

You will see a lot of O-notation in COMP 2002.
Let $a, b, c, d \in \mathbb{R}$ such that $a \geq 1$, $b \geq 2$, $c > 0$, $d \geq 0$, and let $f(n) \in \Theta(n^c)$.

Let $T(n)$ be the following recurrence relation:

- Base: $T(1) = d$
- Recurrence: $T(n) = a \cdot T\left(\left\lfloor \frac{n}{b} \right\rfloor \right) + f(n)$

Then the growth rate of $T(n)$ is:

- If $\log_b a < c$ then $T(n) \in \Theta(f(n))$
- If $\log_b a = c$ then $T(n) \in \Theta(f(n) \log n)$
- If $\log_b a > c$ then $T(n) \in \Theta(n^{\log_b a})$
More to come...

- You will see a lot of algorithm analysis and use of the concepts we developed in COMP 2002 and beyond.
 - Logic, sets, relations and graphs for specification, modeling problems and describing what you are doing.
 - Logic, induction and models of computation for proving program correctness and analysis of problem complexity.
 - Recursive definitions of algorithms, counting and probability for algorithm performance and problem solving.
- With the million dollar problem rearing its head every now and then

Have fun!