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Admin stuff 

• Labs: Wed 9am. First lab Jan 18th.  
– CS-1019 (section 1, up to 60)  
– EN-1049 (section 2, up to 10) 

 
– If you do have a time conflict at 11am: 

• Come to EN-1049  

– If you do not have a time conflict at 11am: 
• Come to CS-1019  

 

 
 
 
 

 



• On a mystical island, there are two kinds of 
people: knights and knaves.  Knights always tell 
the truth.  Knaves always lie. 
 
 
 
 
 

Knights and knaves 

• Puzzle 1:  You meet two people on the 
island, Arnold and Bob. Arnold says “Either I 
am a knave, or Bob is a knight”.  Is Arnold a 
knight or a knave? What about Bob?  
 
 
 
 
 



Knights and knaves 
• Puzzle 1:  You meet two people on the island, Arnold and Bob. 

Arnold says “Either I am a knave, or Bob is a knight”.  Is Arnold 
a knight or a knave? What about Bob?  
– A: Arnold is a knight  
– B: Bob is a knight   
– Formula: ¬𝐴𝐴 ∨ 𝐵𝐵 : “Either Arnold is a knave, or Bob is a knight”  
– Want: scenarios where either both A is a knight and the formula is 

true, or A is a knave and  the formula is false.  Use “if and only if” 
notation:  ¬𝐴𝐴 ∨ 𝐵𝐵 ↔   𝐴𝐴.   True if both formulas have same value 
 

 
 
 
 
 

A B ¬𝑨𝑨  ¬𝑨𝑨 ∨ 𝑩𝑩  ¬𝑨𝑨 ∨ 𝑩𝑩 ↔ 𝑨𝑨  

True True False True True 

True False False False False 

False True True True False 

False  False True True False 



Special types of sentences 
• A sentence that has a satisfying 

assignment is satisfiable.  
– Some  row in the truth table ends with True. 
– Example: B → A    

 
• Sentence is a contradiction:  

– All assignments are falsifying. 
– All rows end with False.  
– Example:  𝐴𝐴 ∧ ¬ 𝐴𝐴  

 
• Sentence is a tautology:  

– All assignments are satisfying   
– All rows end with True. 
– Example: B → A ∨  𝐵𝐵   

 
 

A B B → A   
True True True 

True False True 

False True False 

False  False True 

A B A ∨ 𝑩𝑩  B → A ∨ 𝑩𝑩    

True True True True 

True False True True 

False True True True 

False  False False True 

A A ∧ ¬A   
True False 

False False 



• How long does it take to check if a formula is 
satisfiable? 
– If somebody gives you a satisfying assignment, then 

in time roughly the size of the formula.  
• On a m-symbol formula, take time O(m) = constant * m, for 

some constant depending on the computer/software.  
– What if you don’t know a satisfying assignment? How 

hard it is to find it?  
• Using a truth table:  in time 𝑂𝑂(𝑚𝑚 ∗ 2𝑛𝑛)  on a length m n-

variable formula.    
• Is it efficient?...   

     
 

 
 

 
 
 
 

Determining formula type 



• Would you still consider a problem really solvable 
if it takes very long time?  
– Say 10n steps on an n-symbol string?   
– At a billion (109) steps per second (~1GHz)?     
– To process a string of length 100…   
– will take 10100/109 seconds, or ~3x1072 centuries.     

 
 
 

– Age of the universe: about 1.38x1010  years.  
– Atoms in the observable universe:  1078-1082.  

 
 

 
 
 
 

Complexity of computation 



• What strings do we work with in real life?     
– A DNA string has 3.2 ×109 base pairs 
– A secure key in crypto: 128-256 bits 
– Number of Walmart transactions per day: 106. 
– URLs searched by Google in 2012: 3x1012.  

 
 

 
 

 
 

Complexity of computation 



• How long does it take to check if a formula is 
satisfiable?  
– Using a truth table:  in time 𝑂𝑂(𝑚𝑚 ∗ 2𝑛𝑛)  on a length m 

n-variable formula.    
– Is it efficient?  

• Not really! 
• Formula with 100 variables is already too big!  
• In software verification: millions of variables!  

– Can we do better?  
 
   

     
 

 
 

 
 
 
 

Determining formula type 



Formula simplification 

• Equivalent formulas:  
– Have the same truth table. 
  

• If two formulas F and G are equivalent, then can 
substitute F for G (and vice versa) in any formula H.  
–  𝐴𝐴 ∧ 𝐶𝐶 → ¬𝐵𝐵 ∨ 𝐶𝐶   
– We know:  𝑝𝑝 → 𝑞𝑞  is equivalent to (¬𝑝𝑝 ∨ 𝑞𝑞)  
 
– 𝐴𝐴 ∧ 𝐶𝐶 → ¬𝐵𝐵 ∨ 𝐶𝐶   is equivalent to: ¬ 𝐴𝐴 ∧ 𝐶𝐶 ∨ ¬𝐵𝐵 ∨ 𝐶𝐶  

• But now it looks inconvenient, with that negation on 
the outside… Can we make it simpler?  



Negation example 

– Let A be “it’s sunny” and B “it’s cold”.   
• “It’s sunny and cold today”!  --   No, it’s not!   
• That could mean 

– No, it’s not sunny.  
– No, it’s not cold. 
– No, it’s neither sunny nor cold.  

• In all of these scenarios, “It’s either not sunny or not cold” is 
true.  
 

 



The law of excluded middle  
• In classical logic, the law of excluded middle say that either 

a statement or its opposite must be true.  
• But here by the opposite we really mean a  negation 

 
 A: It is sunny.   

 ¬A: It is not sunny    
 A: Today is Tuesday.  

 ¬A : Today is not Tuesday  
 A:  John votes for NDP.  

 ¬A :  John does not vote for NDP  
 A:  You are with us 

 ¬A :  You are not with us.  
 



De Morgan’s Laws 

• What is the negation of a longer logic statement? 
–  Take a truth table column and flip all the values.  

 
• Some useful simplifications: De Morgan’s laws.  

– For AND: ¬ 𝐴𝐴 ∧ 𝐵𝐵   is  equivalent to ¬𝐴𝐴 ∨ ¬𝐵𝐵   
– For OR: ¬ 𝐴𝐴 ∨ 𝐵𝐵   is  equivalent to ¬𝐴𝐴 ∧ ¬𝐵𝐵   

 
• Example:   

–  ¬ (¬𝐴𝐴 ∨ 𝐵𝐵)  is  ¬¬ 𝐴𝐴 ∧ ¬𝐵𝐵,   same as 𝐴𝐴 ∧ ¬𝐵𝐵  
– So, since 𝐴𝐴 → 𝐵𝐵   is equivalent to ¬𝐴𝐴 ∨ 𝐵𝐵 ,  

¬(𝐴𝐴 → 𝐵𝐵)  is  equivalent to 𝐴𝐴 ∧ ¬𝐵𝐵    
 



Knights and knaves 

• Puzzle 2:  You see  three islanders talking to 
each other,  Arnold, Bob and Charlie. You ask 
Arnold “Are you a knight?”, but can’t hear 
what he answered.  Bob pitches in: “Arnold 
said that he is a knave!” and Charlie interjects 
“Don’t believe Bob, he’s lying”.  Out of Bob and 
Charlie, who is a knight a who is a knave?  

 

• On a mystical island, there are two kinds of 
people: knights and knaves.  Knights always tell 
the truth.  Knaves always lie. 
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