

COMP 1002

Logic for Computer Scientists

Lecture 29

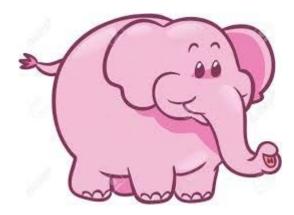
Admin stuff

- Assignment 5 is posted.
 - Due April 2nd.

- Next week:
 - "Mini-lab" on Monday, April 3rd.
 - Review for the final exam on Tuesday, April 4th.
 - Practice final exam on Wednesday, April 5th
 - 9am-11am in CS-1019.

Probabilities and pink elephants

- What is the probability that walking down George street you'd see a pink elephant?
 - Your friend says: "It is ½! You will either see the pink elephant, or not!"
 - Do you agree?



Probabilities and distributions

- What if outcomes are not equally likely?
 Biased coins, etc.
- A function $Pr: S \to \mathbb{R}$ is a **probability distribution** on (a finite set) S if Pr satisfies the following:
 - For any outcome $s \in S$, $0 \leq Pr(s) \leq 1$
 - $-\Sigma_{\{s\in S\}} \Pr(s) = 1$
- Uniform distribution: for all $s \in S$, Pr(s) = 1/|S|
 - all outcomes are equally likely
 - Fair coin: $Pr(heads) = Pr(tails) = \frac{1}{2}$
- Biased coin: say heads twice as likely as tails.
 - Pr(heads) + Pr(tails) = 1. Pr(heads) = 2 * Pr(tails)

$$-\text{ So Pr}(heads) = \frac{2}{3}, \Pr(tails) = \frac{1}{3}$$

Probabilities of events

- Probability of an event A is a sum of probabilities of the outcomes in A:
 Pr(A)=Σ{a∈A} Pr(a)
- Probability of A not occurring:
 - $\Pr(\bar{A}) = 1 \Pr(A)$

- Probability of the union of two events (either A or B happens) is $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$
 - By principle of inclusion-exclusion
 - If A and B are disjoint, then $Pr(A \cap B) = 0$, so $Pr(A \cup B) = Pr(A) + Pr(B)$
- In general, if events $A_1 \dots A_n$ are pairwise disjoint
 - that is, $\forall i, j$ if $i \neq j$ then $A_i \cap A_j = \emptyset$
 - Then $\Pr(\bigcup_{i=1}^{n} A_i) = \Pr(A_1 \cup A_2 \cup \dots \cup A_n) = \sum_{i=1}^{n} \Pr(A_i)$
 - That is, probability of that any of the events happens is the sum of their individual probabilities.

Probabilities of events

- Suppose a die is biased so that 3 appears twice as often as any other number (others equally likely).
 Probability of 3: 2/7. Probabilities of others: 1/7
- What is the probability that an odd number appears?

$$- Pr(A) = \frac{1}{7} + \frac{2}{7} + \frac{1}{7} = \frac{4}{7}$$

• What is a probability that either an odd number or a number divisible by 3 appears?

$$- A = \{1,3,5\}. B = \{3,6\}. A \cap B = \{3\}$$

-
$$Pr(A) = 4/7$$
. $Pr(B) = 3/7$. $Pr(A \cap B) = 2/7$

$$- \operatorname{Pr}(A \cup B) = \operatorname{Pr}(\{1,3,5,6\}) \\ = \frac{4}{7} + \frac{3}{7} - \frac{2}{7} = \frac{1}{7} + \frac{2}{7} + \frac{1}{7} + \frac{1}{7} = \frac{5}{7}$$

Birthday paradox

 How many people have to be in the room so that probability that two of them have the same birthday is at least ½?

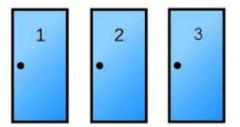
Birthday paradox

- How many people have to be in the room so that probability that two of them have the same birthday is at least ½?
 - Considering all birthdays independent: no twins!
 - And considering all days equally likely
 - Otherwise probability would be higher.
 - Even counting leap years: 366 days.
- Product rule: number of combinations of birthdays of the first *i* people is P(*i*, 366) = 366*365*...*(366-i+1)
 - Probability that the first *i* people all have different birthday is $\frac{P(i,366)}{366^i} = \frac{365}{366} \frac{364}{366} \dots \frac{(366-i+1)}{366}$
 - So with probability $1 \frac{P(i,366)}{366^{i}}$ at least two out of first *i* people have birthday on the same day.
 - That comes up to about i = 23 people to reach $\frac{1}{2}$.

Puzzle: Monty Hall problem

- Let's make a deal!
 - A player picks a door.
 - Behind one door is a car.
 - Behind two others are goats.
- A player chooses a door.
 - A host opens another door
 - Shows a goat behind it.

- And asks the player if she wants to change her choice.
- Should she switch?
 - Originally, probability of picking the car is 1/3
 - If she first picked a door with a car: (1/3 probability)
 - Then she would switch to a goat.
 - If she first picked a door with a goat (2/3 probability)
 - Then she would switch to a car.



Conditional probabilities

- Conditional probability of an event A given event B, denoted Pr(A|B), is the probability of A if we know that B occurred.
 - Probability of car a behind door 2 if we chose door
 1, and door 3 had a goat behind it.
- So it is probability of both A and B, given that we know B happened for sure:

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

- Assume that Pr(B) > 0: after all, B did happen.

Independent events

• If knowing B gives us no information about A and vice versa, then A and B are **independent** events:

- Then
$$Pr(A) = Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$
.

- So A and B are independent iff $Pr(A \cap B) = Pr(A) \cdot Pr(B)$.
 - In general, events $A_1 \dots A_n$ can be **pairwise independent** (that is, any two A_i, A_j) are independent, or (stronger condition) **mutually independent**: $\Pr(\bigcap_{i=1}^n A_i) = \prod_{i=1}^n \Pr(A_i)$
- For example, different coin tosses/dice rolls are usually considered independent.

Bayes theorem

- Consider a medical test that
 - Has false positive rate of 3% (healthy labeled as sick)
 - Specificity 97%
 - Has false negative rate of 1% (sick labeled as healthy).
 - Sensitivity 99%
- What is the probability that a person has the disease given that the test came positive?
 - Let A: person tested positive, B: person is sick. Pr(B|A)?
 - $\Pr(A|B) = 0.99, \Pr(\overline{A}|B) = 0.01...$
- Not enough information!

Bayes theorem

- **Bayes theorem** allows us to get Pr(B|A) from Pr(A|B), if we know probabilities of A and B: $Pr(B|A) = \frac{Pr(A|B) \cdot Pr(B)}{Pr(A)} = \frac{Pr(A|B) \cdot Pr(B)}{Pr(A|B) Pr(B) + Pr(A|\overline{B})Pr(\overline{B})}$
- Proof:
 - $-\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}. \quad \Pr(B|A) = \frac{\Pr(A \cap B)}{\Pr(A)}.$ $-\Pr(A \cap B) = \Pr(A|B)\Pr(B) = \Pr(B|A)\Pr(A)$ $-\operatorname{So}\Pr(B|A) = \Pr(A|B)\Pr(B)/\Pr(B)/\Pr(A)$

Bayes theorem

- Consider a medical test that
 - Has false positive rate of 3% (healthy labeled as sick).
 - Has false negative rate of 1% (sick labeled as healthy).
 - Tests for a disease that occurs in 5 in 1000 people.
- What is the probability that a person has the disease given that the test came positive?
 - Let A: person tested positive, B: person is sick. Pr(B|A)?
 - $Pr(A|B) = 0.99, Pr(\overline{A}|B) = 0.01$. $Pr(\overline{A}|\overline{B}) = 0.97, Pr(A|\overline{B}) = 0.03$
 - Pr(B) = 0.005.
 - $\operatorname{Pr}(A) = \operatorname{Pr}(A|B)\operatorname{Pr}(B) + \operatorname{Pr}(A|\overline{B})\operatorname{Pr}(\overline{B}) = 0.0348$
 - By Bayes theorem, $Pr(B|A) = \frac{Pr(A|B) Pr(B)}{Pr(A)} = 0.1422$
- So the probability that a person who tested positive has the disease is just 0.1422, that is, 14.22%.
 - By a similar argument, probability that a person who tested negative does not have a disease is whopping 0.99995 = 99.995%.

Hat-check problem

- Suppose n men came to an event, and checked in their hats at the door.
 - On the way out, in a hurry, they each picked up a random hat.
 - On average, how many men picked their own hat?

