

COMP 1002

Logic for Computer Scientists

Lecture 28

Admin stuff

- Assignment 5 to be posted today.
 Due April 2nd.
- Assignment 4 is postponed until Saturday morning (7am).

Combinatorics summary

Selecting k out of n objects	Order matters	Order ignored					
With repetitions	n^k	$\binom{k+n-1}{k}$					
Without repetitions	$P(n,k) = \frac{n!}{(n-k)!}$	$\binom{n}{k}$					

Binomial theorem

• Open the parentheses in $(x + y)^2$

 $- x^2 + 2xy + y^2$

• Open parentheses in $(x + y)^3$

$$- x^{3} + xxy + xyx + yxx + xyy + yxy + yyx + y^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

- That is, a coefficient in front of x²y is the number of ways to pick one y (or 2 x) out of 3 positions.
- Call these coefficients **binomial coefficients**.
- Binomial theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

• Corollary: $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$

Pascal's identity and triangle

- How to compute binomial coefficients?
 - First, note only need to compute them for $0 \le k \le \lfloor \frac{n}{2} \rfloor$, since $\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k!(n-k)!}$
- Pascal's identity: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$ 1 - In practice, use Stirling approximation 1 1 - n! $\sim \sqrt{2\pi n} (n/e)^n$ 1 2 1 - So $\frac{n^k}{k^k} \le \binom{n}{k} < \frac{(en)^k}{k^k}$ 1 4 6 4 1 - And $\ln n! \sim n \ln n - n$ 1 5 10 10 5 1 1 6 15 20 15 6 1

Pascal's triangle

Puzzle: playing poker

- There are 52 cards in a standard deck; 4 suites of 13 ranks each.
- In poker, some 5-card combinations ("hands") are special:
 - For example, a "three of a kind" consists of three cards with the same rank, together with two cards of other different ranks.
- How many ways are there to choose (ignoring the order)
 - A royal flush?
 - a three of a kind hand?
 - a two pairs hand?
 - other hands?...

Puzzle: playing poker

- How many ways are there to choose (ignoring the order)
 - a royal flush?
 - C(4,1) = 4
 - a three of a kind?
 - pick the rank: 13=C(13,1)
 - Pick 3 out of 4 kinds of this rank: 4=C(4,3)
 - Pick two other ranks: C(12,2)= 66
 - Pick a suite of each of the other ranks: C(4,1)*C(4,1)=16
 - Total: 13*4*66*16=54912

A ♣			2 *	÷	ļ	3 +	÷		4 	*	5 . ∻	÷	6 *	* *			*	8 * *	*	9 * *	+	10 * *	**	J.	₽:2	K +
	*	÷		÷	ŧ		* *	ψ	÷	**	, *	* **		* * * *	ŝ	*` *	`♣ �_į̇́	*	**************************************	*	***		* * *			
A •			2 •	۰	Î	3 ¢	♠	Ĩ	4 ♠	۰	5 . •	*	6	* * * *	Î			8 ♠ ♠	^	9 ♠ ♠	<u>ب</u>			-	•	K.
	-	¥		Ŷ	Ż		Ý	Ś	۴	¢‡	•	¢∳	•	¥ ¥	\$	Ý	♥ <u>∤</u>	Ý	• • 8	Ť	÷,		₩ ₩ ₩			
÷	¥	•	2	•	•	3 ♥	•	•	4 ♥	•	5 ♥	•	6	•••				₿ ₩		9 •						K
A •		Ą	2 •	•	2	3 ♦	•	2	4 •	•	5 •	•	6 •	• •	9	•	•	₽ ₽ •	• 8	9 •	• • 6					K Contraction
	•	÷		٠	ŧ		•	+ 0	٠	•‡	•	• • •	•	• • • •	• 9	• •	♦ ♦ <u>1</u>			i	•					

Finite probability

- More common: use the language of probability.
- **Experiments**: producing an **outcome** out of possible choices
 - Tossing a coin: outcome can be "heads"
 - Getting a lottery ticket: outcome can be "win"
- Sample space S: set of all possible outcomes.
 - {heads, tails} for coin toss
 - {1,2,3,4,5,6} x {1,2,3,4,5,6} for rolling two dice
- **Event A** ⊆ *S*: subset of outcomes
 - Both dice came up even.
- **Probability** of an event if all outcomes are **equally likely**:
 - Pr(A) = |A|/|S| (fraction of the outcomes that are in the event A).
 - Probability of both dice coming up even:
 - A={ (2,2),(2,4),(4,2),(2,6),(6,2),(4,4), (4,6), (6,4), (6,6)}. |A| =9, |S|=36
 - P(A)=9/36=1/4
- Can use the same combinatorics we just studied to calculate probabilities (i.e., for finding the size of A).

Puzzle: playing poker

- What is the probability of getting a three of a kind hand?
 - Size of the sample space: $-C(52, 5) = \binom{52}{5} = 2,598,962$
 - Size of the event A:
 - 54,912
 - Probability of A:

$$- \Pr(A) = \frac{|A|}{|S|} = 0.0211..$$

Puzzle: Monty Hall problem

- Let's make a deal!
 - A player picks a door.
 - Behind one door is a car.
 - Behind two others are goats.
- A player chooses a door.
 - A host opens another door
 - Shows a goat behind it.
 - And asks the player if she wants to change her choice.
- Should she switch?

