Admin stuff

• Assignment 4 is posted.
 – Due March 23rd.

• Monday March 20th office hours
 – From 2:30pm to 3:30pm
 • I need to attend something 2-2:30pm.
Regular expressions

• A regular expression is a standard tool for pattern matching
 – in Python, Perl, Ruby, grep, shell scripts...
 – a | b* matches either a letter a, or 0 or more repetitions of b.
 – So a regular expression defines a set of strings that it matches: a regular language.

• Recursive definition of regular expressions (as a set of strings):
 – Base: ∅, λ (empty string), all letters in alphabet
 – Recursive step: Given two regular expressions R and S, the following are regular expressions:
 • Union $R \cup S$ (sometimes written $R \mid S$)
 – Often drop parentheses when no ambiguity
 • Concatenation $R \circ S = \{xy \mid x \in R \text{ and } y \in S \}$ (sometimes written RS)
 • A Kleene star $R^* = \{x_1x_2\ldots x_k \mid k \in \mathbb{N} \land \forall i \in \{0,\ldots,k\} \land x_i \in R \}$
 – k=0 ok; so zero or more strings from R concatenated together.
 – Restriction: no other strings are in the set.
Examples of regular expressions

- aa^*
 - Strings of one or more a’s.
- $(0|1)^*00$
 - Binary strings ending in 00.
- $\text{COMP}(1000|1001|1002|2001)$
- $\text{COMP}(1|2)00(0|1|2)$
- \emptyset
 - Does not match anything: zero strings in the language
- λ
 - Matches the empty string: one string in the language
WHENEVER I LEARN A NEW SKILL I CONCOCT ELABORATE FANTASY SCENARIOS WHERE IT LETS ME SAVE THE DAY.

OH NO! THE KILLER MUST HAVE FOLLOWED HER ON VACATION!

BUT TO FIND THEM WE'D HAVE TO SEARCH THROUGH 200 MB OF EMAILS LOOKING FOR SOMETHING FORMATTED LIKE AN ADDRESS!

IT'S HOPELESS!

EVERYBODY STAND BACK.

I KNOW REGULAR EXPRESSIONS.

Permanent link to this comic: https://xkcd.com/208/
Pattern matching

• Suppose we have a DNA string:
 – AAGATTCATTAATAAAATACGCTTACA
 – And a gene string ATAC
 – How do we check if the string contains the match?

AAGATTCATATAATAAAATACGCTTACA
ATAC

– Could just move along checking each letter, and if mismatch, shifting by 1 character...
 • There is a faster way: finite state machines.
Matching with finite state machines

- Faster matching idea:

AAGATTCATATAATAAATACGCTTACA

- If mismatch T instead of C, know that shifting by 2 would be good enough; no need to re-match ATA
Finite state machine

• Metrobus door: wave to open.
 – Only works when bus has stopped.
 – Description of the system:
 • If bus is in motion then closed.
 • If bus is stopped then if wave received, open.
 • If bus is stopped and there is no wave, remain closed.
Finite state machine

- Finite state machine:
 - States
 - Including start state s, possibly finish states
 - Inputs
 - An input alphabet
 - Transitions from $States \times Inputs \rightarrow States$
 - Sometimes also have outputs:
 - Then include output alphabet
 - Transitions to $States \times Outputs$

- In the bus example
 - Two states: closed and open.
 - Looks like closed is the start state.
 - In real life, probably more states needed.
 - Input alphabet
 - Bus moving/stopping, wave.
 - Transitions:
 - If closed and stopping and sensed a wave, go to open
 - If open and started moving, go to closed.
Finite automata

• Finite state machines with no output.
• Take an input string, accept if finish in an accepting state
 – Example: accept strings with even number of 1s.
 • States s_1, s_2
 • s_1 is a start state
 – Arrow
 • s_1 is an accepting state
 – Double circle
 • Input alphabet is \{0,1\}
 • Transitions:
 | | 0 | 1 |
 |---|---|---|
 | s_1 | s_1 | s_2 |
 | s_2 | s_2 | s_1 |

 – If exactly one transition for each pair (state, symbol)
 • Then called deterministic finite automata (DFA)
 • Otherwise, non-deterministic finite automata (NFA)
 – No transition: stop and reject. Multiple: if some choice eventually leads to accept, accept.
 – Everything an NFA can do, a DFA can do. But might need a much bigger DFA.
Regular expressions

• Recursive definition of regular expressions (as a set of strings):
 – Base: \emptyset, λ (empty string), all letters in alphabet
 – Recursive step: Given two regular expressions R and S, the following are regular expressions:
 • Union $R \cup S$ (sometimes written $R \mid S$)
 – Often drop parentheses when no ambiguity
 • Concatenation $R \circ S = \{xy \mid x \in R \text{ and } y \in S\}$
 (sometimes written RS)
 • A Kleene star $R^* = \{x_1x_2 \ldots x_k \mid k \in \mathbb{N} \land \forall i \in \{0, \ldots, k\} \land x_i \in R\}$
 – k=0 ok; so zero or more strings from R concatenated together.
 – Restriction: no other strings are in the set.
Finite automata compute what regular expressions match

- Each regular expression can be computed by a finite automaton (in particular, NFA).

- Proof (structural induction)
 - Base case:
 - Compute the empty language:
 - Accept just the empty string:
 - Accept just the string with one symbol a:
 - Recursion step: take NFAs for R and for S.
 - Kleene star R^*: loop back to start (make start accepting)
 - Union $R \cup S$: done with ambiguity (combine starts)
 - Concatenation $R \circ S$: accept states of R become start of S.
Turing machines

- Like finite automata with external memory.
- Church-Turing thesis: Turing machines can compute anything “computable”
 - In particular, anything a human can compute.
Turing machine

- A Turing machine has an (unlimited) memory, visualized as a tape
- Or a stack of paper
- And takes very simple instructions:
 - Read a symbol
 - Write a symbol
 - Move one step left or right on the tape
 - Change internal state.
Church-Turing thesis

Everything we can call “computable” is computable by a Turing machine.
Conway’s game of life

- At every step of the game:
 - Every live cell with less than 2 neighbours dies
 - Every live cell with more than 3 neighbours dies
 - A cell with exactly 3 neighbours becomes alive (is “born”).
Conway’s game of life: what does it mean to compute?

• Start with a few cells lit up
• See if cells somewhere else light up
• Make it so they only light up if some condition holds
• Just like a Turing machine going into “yes”-state if some condition holds about its input

Rules of the Game of Life:
At every step of the game:
– Every live cell with less than 2 neighbours dies
– Every live cell with more than 3 neighbours dies
– A cell with exactly 3 neighbours becomes alive (is “born”).
Game of life and Turing machines are equivalent

• A Turing machine can read a description of the initial configuration and keep applying the rules.

• Conway game of life can do a Turing machine using this picture:
Puzzle: chocolate squares

• Suppose you have a piece of chocolate like this:

• How many squares are in it?
 – of all sizes, from single to the whole thing