

Lecture 25

COMP 1002

Logic for Computer Scientists

B J 2 5

Admin stuff

• Assignment 4 is posted.
– Due March 23rd.

• Monday March 20th office hours
– From 2:30pm to 3:30pm

• I need to attend something 2-2:30pm.

Regular expressions
• A regular expression is a standard tool for pattern matching

– in Python, Perl, Ruby, grep, shell scripts...
– a | b* matches either a letter a, or 0 or more repetitions of b.
– So a regular expression defines a set of strings that it matches: a

regular language.

• Recursive definition of regular expressions (as a set of strings):
– Base: ∅, 𝜆𝜆 (empty string), all letters in alphabet
– Recursive step: Given two regular expressions R and S, the following

are regular expressions:
• Union 𝑅𝑅 ∪ 𝑆𝑆 (sometimes written 𝑅𝑅 | 𝑆𝑆)

– Often drop parentheses when no ambiguity
• Concatenation 𝑅𝑅 ∘ 𝑆𝑆 = 𝑥𝑥𝑥𝑥 𝑥𝑥 ∈ 𝑅𝑅 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦 ∈ 𝑆𝑆 } (sometimes written RS)
• A Kleene star 𝑅𝑅∗= 𝑥𝑥1𝑥𝑥2 … 𝑥𝑥𝑘𝑘 𝑘𝑘 ∈ ℕ ∧ ∀𝑖𝑖 ∈ {0, … , 𝑘𝑘} ∧ 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅 }

– k=0 ok; so zero or more strings from R concatenated together.
– Restriction: no other strings are in the set.

Examples of regular expressions
• 𝑎𝑎𝑎𝑎∗

– Strings of one or more a’s.
• 0 1 ∗00

– Binary strings ending in 00.
• COMP(1000|1001|1002|2001)

– Matches COMP1000, COMP1001, COMP1002 and COMP2001.
• COMP(1|2)00(0|1|2)

– COMP1000,COMP2000,COMP1001, COMP2001, COMP1002,COMP2002
• ∅

– Does not match anything: zero strings in the language
• 𝜆𝜆

– Matches the empty string: one string in the language

Permanent link to this comic: https://xkcd.com/208/

Pattern matching

• Suppose we have a DNA string:
– AAGATTCATTAATAAATACGCTTACA
– And a gene string ATAC
– How do we check if the string contains the match?

– Could just move along checking each letter, and if
mismatch, shifting by 1 character...

• There is a faster way: finite state machines.

AAGATTCATATAATAAATACGCTTACA
ATAC

Matching with finite state machines

• Faster matching idea:

– If mismatch T instead of C, know that shifting by 2

would be good enough; no need to re-match ATA

AAGATTCATATAATAAATACGCTTACA
ATAC

1st
letter

OK

Start
match

2nd
letter

OK

3rd
letter

OK

Last
letter

OK

`

A

C,G,T

A T C

C,G

C,G,T A

T

G

`
A

Finite state machine

• Metrobus door: wave to open.
– Only works when bus has stopped.
– Description of the system:

• If bus is in motion then closed.
• If bus is stopped then if wave received, open.
• If bus is stopped and there is no wave, remain closed.

Bus stopped and wave

Bus started moving

Door
open

Door
Closed

Finite state machine
• Finite state machine:

– States
• Including start state s, possibly finish states

– Inputs
• An input alphabet

– Transitions from 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
• Sometimes also have outputs:

– Then include output alphabet
– Transitions to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

• In the bus example
– Two states: closed and open.

• Looks like closed is the start state.
• In real life, probably more states needed.

– Input alphabet
• Bus moving/stopping, wave.

– Transitions:
• If closed and stopping and sensed a wave, go to open
• If open and started moving, go to closed.

Bus stopped and wave

Bus started moving

Finite automata
• Finite state machines with no output.
• Take an input string, accept if finish in an accepting state

– Example: accept strings with even number of 1s.
• States 𝑠𝑠1, 𝑠𝑠2
• 𝑠𝑠1 is a start state

– Arrow
• 𝑠𝑠1 is an accepting state

– Double circle
• Input alphabet is {0,1}
• Transitions:

– 𝑠𝑠1, 0 → 𝑠𝑠1
– 𝑠𝑠1, 1 → 𝑠𝑠2
– 𝑠𝑠2, 0 → 𝑠𝑠2
– 𝑠𝑠2, 1 → 𝑠𝑠1

– If exactly one transition for each pair (state, symbol)
• Then called deterministic finite automata (DFA)
• Otherwise, non-deterministic finite automata (NFA)

– No transition: stop and reject. Multiple: if some choice eventually leads to accept,
accept.

– Everything an NFA can do, a DFA can do. But might need a much bigger DFA.

𝑠𝑠2 𝑠𝑠1

0

1

1
0

0 1

𝒔𝒔𝟏𝟏 𝑠𝑠1 𝑠𝑠2

𝒔𝒔𝟐𝟐 𝑠𝑠2 𝑠𝑠1

Regular expressions

• Recursive definition of regular expressions (as a
set of strings):
– Base: ∅, 𝜆𝜆 (empty string), all letters in alphabet
– Recursive step: Given two regular expressions R and

S, the following are regular expressions:
• Union 𝑅𝑅 ∪ 𝑆𝑆 (sometimes written 𝑅𝑅 | 𝑆𝑆)

– Often drop parentheses when no ambiguity
• Concatenation 𝑅𝑅 ∘ 𝑆𝑆 = 𝑥𝑥𝑥𝑥 𝑥𝑥 ∈ 𝑅𝑅 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦 ∈ 𝑆𝑆 }

(sometimes written RS)
• A Kleene star 𝑅𝑅∗ = 𝑥𝑥1𝑥𝑥2 … 𝑥𝑥𝑘𝑘 𝑘𝑘 ∈ ℕ ∧ ∀𝑖𝑖 ∈ {0, … ,𝑘𝑘}
∧ 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅 }

– k=0 ok; so zero or more strings from R concatenated together.

– Restriction: no other strings are in the set.

Finite automata compute
what regular expressions match

• Each regular expression can be computed by a
finite automaton (in particular, NFA).

• Proof (structural induction)
– Base case:

• Compute the empty language:
• Accept just the empty string:
• Accept just the string with one symbol a:

– Recursion step: take NFAs for R and for S.
• Kleene star 𝑅𝑅∗: loop back to start (make start accepting)
• Union 𝑅𝑅 ∪ 𝑆𝑆: done with ambiguity (combine starts)
• Concatenation 𝑅𝑅 ∘ 𝑆𝑆: accept states of R become start of S.

a

Turing machines

• Like finite automata with external memory.
• Church-Turing thesis: Turing machines can

compute anything “computable”
– In particular, anything a human can compute.

Turing machine

• A Turing machine has an (unlimited)
memory, visualized as a tape

• Or a stack of paper
• And takes very simple instructions:

– Read a symbol
– Write a symbol
– Move one step left or right
 on the tape
– Change internal state.

http://morphett.info/turing/turing.html

Church-Turing thesis

 Everything we can call “computable” is
computable by a Turing machine.

Conway’s game of life

• At every step of the game:

– Every live cell with less than
2 neighbours dies

– Every live cell with more
than 3 neighbours dies

– A cell with exactly 3
neighbours becomes alive (is
“born”).

 • Converge to a still pattern

• Oscillate

• Create a moving pattern

http://www.rennard.org/alife/english/logicellgb.html

Conway’s game of life:
 what does it mean to

compute?

• Rules of the Game of Life:
• At every step of the game:

– Every live cell with less than
2 neighbours dies

– Every live cell with more
than 3 neighbours dies

– A cell with exactly 3
neighbours becomes alive (is
“born”).

• Start with a few cells lit up
• See if cells somewhere else light

up
• Make it so they only light up if

some condition holds
• Just like a Turing machine going

into “yes”-state if some
condition holds about its input

http://www.rennard.org/alife/english/logicellgb.html
http://www.rennard.org/alife/english/logicellgb.html

 Game of life and Turing
machines are equivalent

• A Turing machine
can read a
description of the
initial
configuration and
keep applying the
rules.

• Conway game of
life can do a Turing
machine using this
picture:

http://rendell-attic.org/gol/tm.htm
http://www.math.washington.edu/%7Egautas/life/

Puzzle: chocolate squares

• Suppose you have a piece of chocolate like this:

• How many squares are in it?
– of all sizes, from single to the whole thing

	COMP 1002��Logic for Computer Scientists�
	Admin stuff
	Regular expressions
	Examples of regular expressions
	Slide Number 5
	Pattern matching
	Matching with finite state machines
	Finite state machine
	Finite state machine
	Finite automata
	Regular expressions
	Finite automata compute �what regular expressions match
	Turing machines
	Turing machine
	Church-Turing thesis
	Conway’s game of life
	Conway’s game of life:� what does it mean to compute?
	 Game of life and Turing machines are equivalent
	Puzzle: chocolate squares

