COMP 1002

Logic for Computer Scientists

Lecture 25

i
E’-l-;i_

Admin stuff

e Assignment 4 is posted.
— Due March 23",

* Monday March 20" office hours

— From 2:30pm to 3:30pm
* | need to attend something 2-2:30pm.

Regular expressions

A regular expression is a standard tool for pattern matching
— in Python, Perl, Ruby, grep, shell scripts...
— a | b* matches either a letter a, or 0 or more repetitions of b.

— So a regular expression defines a set of strings that it matches: a
regular language.

e Recursive definition of regular expressions (as a set of strings):
— Base: @, A (empty string), all letters in alphabet
— Recursive step: Given two regular expressions R and S, the following
are regular expressions:

e Union RUS (sometimes written R | S)

— Often drop parentheses when no ambiguity
* ConcatenationRoS ={xy|x € Randy € S} (sometimes written RS)
e AKleenestar R*= {x;x, ..x; | Kk ENAVi€{0,....,k} A x; ER}

— k=0 ok; so zero or more strings from R concatenated together.

— Restriction: no other strings are in the set.

Examples of regular expressions

*

aa
— Strings of one or more a’s.
(0]1)*00
— Binary strings ending in 00.
COMP(1000]/1001|1002|2001)
— Matches COMP1000, COMP1001, COMP1002 and COMP2001.
COMP(1]2)00(0|1]2)
— COMP1000,COMP2000,COMP1001, COMP2001, COMP1002,COMP2002

0)

— Does not match anything: zero strings in the language

A

— Matches the empty string: one string in the language

\WHENEYER T LEARN A |
NEW SKILL 1 (IE{UCV'

ELABORATE FANTASY
SCENARI0S WHERE (T

LETS ME. SWVE HE DAY. |

OH NO! THE KILLER || BUT TD FIND THEM WED HAVE TO SEARCH
MUST HAVE FOLLOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR
HER ON VACATION! || SOMETHING FORMATTED LIKE AN ADDRESS!

S

T KNOW REGULAR,
EXPRESSIONS.

b X

/),

allie

Permanent link to this comic: https://xkcd.com/208/

Pattern matching

e Suppose we have a DNA string: MWQF
— AAGATTCATTAATAAATACGCTTACA i

— And a gene string ATAC
— How do we check if the string contains the match?

AAGATTCATATAATAAATACGCTTACA
ATAC

— Could just move along checking each letter, and if
mismatch, shifting by 1 character...

* There is a faster way: finite state machines.

“** Matching with finite state machines

e Faster matching idea:

AAGATTCATATAATAAATACGCTTACA
ATAC

— If mismatch T instead of C, know that shifting by 2
would be good enough; no need to re-match ATA

C,G,T A
A T A C
2nd 3rd Last
EE— l letter l letter letter
OK OK OK
C,G, A
G

Finite state machine |

e Metrobus door: wave to open.
— Only works when bus has stopped.
— Description of the system:

e If bus isin motion then closed.
e |f busis stopped then if wave received, open.
 |f bus is stopped and there is no wave, remain closed.

Bus stopped and wave
Door

Closed

Bus started moving

Finite state machine

* Finite state machine:

— States
* Including start state s, possibly finish states
— Inputs
* Aninput alphabet
— Transitions from States X Inputs — States

* Sometimes also have outputs:
— Then include output alphabet
— Transitions to States X Outputs

* Inthe bus example

— Two states: closed and open. Bus stopped and wave
* Looks like closed is the start state.
* Inreal life, probably more states needed.
— |npUt alphabet Bus started moving
e Bus moving/stopping, wave.
— Transitions:
* |f closed and stopping and sensed a wave, go to open
* |f open and started moving, go to closed.

Finite automata

* Finite state machines with no output.

e Take an input string, accept if finish in an accepting st@

— Example: accept strings with even number of 1s.
* States sq, S,
* S, isastart state

— Arrow
* 54 isan accepting st 0

— Double circle 0
e Input alphabetis {0,1} 1 D
* Transitions: -__ —_— (@

- (51,0) » 5 S1 Sy 1

- (51, D) - sy

— (52,0) = 5 K K

- (s2,1) = 54

— If exactly one transition for each pair (state, symbol)
e Then called deterministic finite automata (DFA)

e Otherwise, non-deterministic finite automata (NFA)

— No transition: stop and reject. Multiple: if some choice eventually leads to accept,
accept.

— Everything an NFA can do, a DFA can do. But might need a much bigger DFA.

Regular expressions

e Recursive definition of regular expressions (as a
set of strings):

— Base: @, A (empty string), all letters in alphabet

— Recursive step: Given two regular expressions R and
S, the following are regular expressions:
e Union RU S (sometimes written R | S)
— Often drop parentheses when no ambiguity

e Concatenation RoS ={xy|x€Randy € S}
(sometimes written RS)

* AKleenestar R* = {x1x, ...x; | Kk e NAVI € {0, ..., k}
N Xi ER }
— k=0 ok; so zero or more strings from R concatenated together.

— Restriction: no other strings are in the set.

Finite automata compute
what regular expressions match

e Each regular expression can be computed by a
finite automaton (in particular, NFA).

e Proof (structural induction)

— Base case:
e Compute the empty language: _’O
* Accept just the empty string: — QO
e Accept just the string with one symbol a: O ° -O

— Recursion step: take NFAs for R and for S.
e Kleene star R*: loop back to start (make start accepting)
e Union R U S: done with ambiguity (combine starts)
e Concatenation R o S: accept states of R become start of S.

Turing machines

e Like finite automata with external memory.

 Church-Turing thesis: Turing machines can
compute anything “computable”

— In particular, anything a human can compute.

2z 1 [on
] 2V

s ~ v
N Z
.. éfj\ & e ;‘m

{ ool
/ Gt 7

=
Qg Torio!

ow SR

Turing machine

e A Turing machine has an (unlimited)
memory, visualized as a tape

e Or a stack of paper

* And takes very simple instructions:
— Read a symbol |

— Write a symbol

o

— Move one step left or right
on the tape

— Change internal state.

http://morphett.info/turing/turing.html

2 Church-Turing thesis
R

Everything we can call “computable” is
computable by a Turing machine.

CHICAGO [0 DETROT

BOSTON TO CHICAGD iy “ o &
: ATLANTA TO BOSTON ! AR
o, il | .0 ¥
— ¥ R = | -
i “ G '3 h Y
A - 41 DU 4 3 bt
< L "
e A
! ¥ * kY & G il g ¢
o 5 ¥ I L. - EFFICIENT COMPUTATION
g =, o y g 3 " 5

IN THE PHYSICAL UNIVERSH

e h ¥ ey ik T e
. e, G . N
¥ =/ G iy
=g »._) COMPLEMENT OF CHICAGOD

from Soienits Ametinen, A (86E T COMPLEMENT OF BOSTON

e At every step of the game:

— Every live cell with less than
2 neighbours dies

) . . .
Conway’s game of life et v
A cell with exactly 3
neighbours becomes alive (is

1‘.:' - $
e L
- e T
" . = "':':-".'_ 4] 5
PRl b =D Tt ¥ L
":" -.:I.__ ' v
- - = " S
- -1:-‘:'::. .'r"l . . :.:.E-.:':.}.-

http://www.rennard.org/alife/english/logicellgb.html

COnway,S ga me Of ||fe: e Rules of the Game of Life:

e At every step of the game:
— Every live cell with less than

what does it mean to 5 melghbours dies

— Every live cell with more
than 3 neighbours dies

COmpUte? — A cell with exactly 3

neighbours becomes alive (is
“born”).

Start with a few cells lit up

See if cells somewhere else light
up

Make it so they only light up if
some condition holds

Just like a Turing machine going
into “yes”-state if some
condition holds about its input

http://www.rennard.org/alife/english/logicellgb.html
http://www.rennard.org/alife/english/logicellgb.html

Game of life and Turing
machines are equivalent

A Turing machine
canread a
description of the
initial
configuration and
keep applying the
rules.

e Conway gameof =
life can do a Turing
machine using this
picture:

http://rendell-attic.org/gol/tm.htm
http://www.math.washington.edu/%7Egautas/life/

Puzzle: chocolate squares.

e Suppose you have a piece of chocolate like this:

e How many squares are in it?
— of all sizes, from single to the whole thing

	COMP 1002��Logic for Computer Scientists�
	Admin stuff
	Regular expressions
	Examples of regular expressions
	Slide Number 5
	Pattern matching
	Matching with finite state machines
	Finite state machine
	Finite state machine
	Finite automata
	Regular expressions
	Finite automata compute �what regular expressions match
	Turing machines
	Turing machine
	Church-Turing thesis
	Conway’s game of life
	Conway’s game of life:� what does it mean to compute?
	 Game of life and Turing machines are equivalent
	Puzzle: chocolate squares

