

COMP 1002

Logic for Computer Scientists

Lecture 25

Admin stuff

• Assignment 4 is posted.

– Due March 23rd.

- Monday March 20th office hours
 - From 2:30pm to 3:30pm
 - I need to attend something 2-2:30pm.

Regular expressions

- A regular expression is a standard tool for pattern matching
 - in Python, Perl, Ruby, grep, shell scripts...
 - a | b* matches either a letter a, or 0 or more repetitions of b.
 - So a regular expression defines a set of strings that it matches: a regular language.
- Recursive definition of regular expressions (as a set of strings):
 - Base: Ø, λ (empty string), all letters in alphabet
 - Recursive step: Given two regular expressions R and S, the following are regular expressions:
 - Union $R \cup S$ (sometimes written $R \mid S$)
 - Often drop parentheses when no ambiguity
 - Concatenation $R \circ S = \{xy \mid x \in R \text{ and } y \in S\}$ (sometimes written RS)
 - A Kleene star $R^* = \{x_1 x_2 \dots x_k \mid k \in \mathbb{N} \land \forall i \in \{0, \dots, k\} \land x_i \in R\}$
 - k=0 ok; so zero or more strings from R concatenated together.
 - Restriction: no other strings are in the set.

Examples of regular expressions

- *aa**
 - Strings of one or more a's.
- $(0|1)^*00$
 - Binary strings ending in 00.
- COMP(1000|1001|1002|2001)
 - Matches COMP1000, COMP1001, COMP1002 and COMP2001.
- COMP(1|2)00(0|1|2)
 - COMP1000,COMP2000,COMP1001, COMP2001, COMP1002,COMP2002
- Ø
 - Does not match anything: zero strings in the language
- λ
 - Matches the empty string: one string in the language

Permanent link to this comic: https://xkcd.com/208/

Pattern matching

• Suppose we have a DNA string:

- AAGATTCATTAATAAATACGCTTACA
- And a gene string ATAC
- How do we check if the string contains the match?

AAGATTCATATAATAAATACGCTTACA ATAC

- Could just move along checking each letter, and if mismatch, shifting by 1 character...
 - There is a faster way: finite state machines.

Matching with finite state machines

• Faster matching idea:

AAGATTCATATAATAAATACGCTTACA ATAC

 If mismatch T instead of C, know that shifting by 2 would be good enough; no need to re-match ATA

Finite state machine

- Metrobus door: wave to open.
 - Only works when bus has stopped.
 - Description of the system:
 - If bus is in motion then closed.
 - If bus is stopped then if wave received, open.
 - If bus is stopped and there is no wave, remain closed.

Finite state machine

- Finite state machine:
 - States
 - Including start state s, possibly finish states
 - Inputs
 - An input alphabet
 - Transitions from *States* × *Inputs* \rightarrow *States*
 - Sometimes also have outputs:
 - Then include output alphabet
 - Transitions to $States \times Outputs$
- In the bus example
 - Two states: closed and open.
 - Looks like closed is the start state.
 - In real life, probably more states needed.
 - Input alphabet
 - Bus moving/stopping, wave.
 - Transitions:
 - If closed and stopping and sensed a wave, go to open
 - If open and started moving, go to closed.

Finite automata

- Finite state machines with no output.
- Take an input string, accept if finish in an accepting state
 - Example: accept strings with even number of 1s.
 - States *s*₁, *s*₂
 - s₁ is a start state
 - Arrow
 - *s*₁ is an accepting state
 - Double circle
 - Input alphabet is {0,1}
 - Transitions:

- $(s_2, 1) \to s_1$
- If exactly one transition for each pair (state, symbol)
 - Then called deterministic finite automata (DFA)
 - Otherwise, non-deterministic finite automata (NFA)
 - No transition: stop and reject. Multiple: if some choice eventually leads to accept, accept.
 - Everything an NFA can do, a DFA can do. But might need a much bigger DFA.

Regular expressions

- Recursive definition of regular expressions (as a set of strings):
 - Base: Ø, λ (empty string), all letters in alphabet
 - Recursive step: Given two regular expressions R and S, the following are regular expressions:
 - Union $R \cup S$ (sometimes written $R \mid S$)
 - Often drop parentheses when no ambiguity
 - Concatenation R ∘ S = {xy | x ∈ R and y ∈ S } (sometimes written RS)
 - A Kleene star $R^* = \{x_1 x_2 \dots x_k \mid k \in \mathbb{N} \land \forall i \in \{0, \dots, k\} \land x_i \in R \}$

- k=0 ok; so zero or more strings from R concatenated together.

- Restriction: no other strings are in the set.

Finite automata compute what regular expressions match

- Each regular expression can be computed by a finite automaton (in particular, NFA).
- Proof (structural induction)
 - Base case:
 - Compute the empty language: →○
 - Accept just the empty string: →○
 - Accept just the string with one symbol a:

- Recursion step: take NFAs for R and for S.
 - Kleene star R*: loop back to start (make start accepting)
 - Union $R \cup S$: done with ambiguity (combine starts)
 - Concatenation *R S*: accept states of R become start of S.

Turing machines

- Like finite automata with external memory.
- Church-Turing thesis: Turing machines can compute anything "computable"
 - In particular, anything a human can compute.

Turing machine

- A Turing machine has an (unlimited) memory, visualized as a tape
- Or a stack of paper
- And takes very simple instructions:
 - Read a symbol
 - Write a symbol
 - Move one step left or right on the tape
 - Change internal state.

Church-Turing thesis

Everything we can call "computable" is computable by a Turing machine.

Conway's game of life

- At every step of the game:
 - Every live cell with less than 2 neighbours dies
 - Every live cell with more than 3 neighbours dies
 - A cell with exactly 3 neighbours becomes alive (is "born").

Conway's game of life: what does it mean to compute?

- Rules of the Game of Life:
- At every step of the game:
 - Every live cell with less than 2 neighbours dies
 - Every live cell with more than 3 neighbours dies
 - A cell with exactly 3 neighbours becomes alive (is "born").

- Start with a few cells lit up
- See if cells somewhere else light up
- Make it so they only light up if some condition holds
- Just like a Turing machine going into "yes"-state if some condition holds about its input

Game of life and Turing machines are equivalent

- A Turing machine can read a description of the initial configuration and keep applying the rules.
- Conway game of life can do a Turing machine using this picture:

Puzzle: chocolate squares

• Suppose you have a piece of chocolate like this:

How many squares are in it?
– of all sizes, from single to the whole thing