COMP 1002

Logic for Computer Scientists

Lecture 23

i
E’-l-;i_

Admin stuff

* Assignment 3 extension

— Because of the power outage, assignment 3 now
due on Tuesday, March 14 (also 7pm)

* Assignment 4 to be posted by tomorrow.
— Due March 215t

Recursive definitions of sets

e So far, we talked about recursive definitions of
sequences. We can also give recursive definitions of
sets.

— E.g: recursive definition of a set S={0,1}"
e Basis: empty stringisin S.
e Recursive step: ifw € S, thenw0 €S andwl €S
— Here, w0 means string w with 0 appended at the end; same for wl
— Alternatively:
e Basis: empty string, 0 and 1 are in S.

e Recursive step: ifs andtareinS, thenste §

— here, st is concatenation: symbols of s followed by symbols of t
— If s=101 and t= 0011, then st = 1010011

— Additionally, need a restriction condition: the set S contains
only elements produced from basis using recursive step rule.

Trees

* |n computer science, a tree is an undirected cff\@
graph without cycles Undirected cycle

— Undirected: all edges go both ways, no arrows."* ® "

— Cycle: sequence of edges going back to the same
point.

e Recursive definition of trees:

— Base: Asingle vertex @ is a tree.

— Recursion:
e Let T be a tree, and v a new vertex.

 Then a new tree consist of T, v, and an edge (connection)
between some vertex of T and v.

— Restriction:

e Anything that cannot be constructed with this rule from
this base is not a tree.

Arithmetic expressions

e Suppose you are writing a piece of code that takes an
arithmetic expression and, say evaluates it.

— “5%3.1” “40-(x+1)*7”", etc

e How to describe a valid arithmetic expression? Define
a set of all valid arithmetic expressions recursively.
— Base: A number or a variable is a valid arithmetic
expression.
e 5 100, x, a,
— Recursion:

e If A and B are valid arithmetic expressions, then so are (A),
A+B,A—B, AxB,A/B.

— Constructing 40-(x+1)*7: first construct 40, x, 1, 7. Then x+1. Then (x+1).
Then (x+1)*7, finally 40-(x+1)*7

— Caveat: how do we know the order of evaluation? On that later.
— Restriction: nothing else is a valid arithmetic expression.

Formulas

 What is a well-formed propositional logic
formula?
- (PVag) Ar > (ap o 1)
— Base: a propositional variable p, q, 1 ...
e Oraconstant TRUE,FALSE

— Recursion:

 If Fand G are propositional formulas, so are (F), —F,
FAGFVG,F -G F eoG.

— And nothing else.

Formulas

e What is a well-formed predicate logic formula?

—3dxEDVyE€ETZ P((x,y) VQ(x,Z)) AX =1y
— Base: a predicate with free variables

e P(x), x=y, ...
— Recursion:

 |f Fand G are predicate logic formulas, so are (F), =F, F A
G, FVGF -G, F o G.

e If F is a predicate logic formula with a free variable x, then
dx € DF and Vx € D F are predicate logic formulas.

— And nothing else.

 So dx € People Likes(x,y Ax), Likes(y #+ x) is not a
well-formed predicate logic formula!

3%

pucele

B
La

k5

Grammars

e A general recursive definition for these is called a grammar.

— In particular, here we have “context-free” grammars, where symbols have the same
meaning wherever they are.

e A context-free grammar consists of

— A et V of variables (using capital letters)
* Including a start variable S.

— A set X of terminals (disjoint from V; alphabet)

— A set R of rules, where each rule consists of a variable from V and a string of variables
and terminals.

* IfA - wisarule, we say variable A yields string w.
— This is not the same “— " as implication, a different use of the same symbol.
e We use shortcut “|” when the same variable might yield several possible strings:
A - wy| wy| ... |lwg
e Can use A again within the rule: Recursion!
— Different occurrences of the same variable can be interpreted as different strings.
* When left with just terminals, a string is derived.

* Alanguage generated by a grammar consists of all strings of terminals that can
be derived from the start variable by applying the rules.

— All strings are derived by repeatedly applying the grammar rules to each variable until
there are no variables left (just the terminals).

Grammar ||
Police

7o Senve and
&

Examples of grammars

e Example: language {1, 00} consisting of two strings 1 and 00

S > 1] 00

e Variables: S. Terminals: 1 and 00.

e Example: strings over {0,1} with all Os before all 1s.

S—>0S|S1]|_

e Variables: S. Terminals: 0 and 1.

* Example: propositional formulas.

1

2.
3.
4.
5.

F—-> FVF

F>FAF

F - —F

F - (F)

F ->p|q|r|TRUE |FALSE

Here, the only variableis F (it is a start variable), and terminalsare V,A,—,(,),p,q,7,TRUE, FALSE

To obtain (p V =q) A, first apply rule 2, then rule 1, then rule 5 to get p, then rule 3, then rule 5 to get g, then rule 5 to
getr.

* Example: arithmetic expressions.

EXPR —» EXPR + EXPR | EXPR — EXPR | EXPR = EXPR | EXPR / EXPR |(EXPR) | NUMBER|-
NUMBER

NUMBER — ODIGITS |...|9DIGITS

DIGITS —» _| NUMBER

* Here, _stands for empty string. Variables: EXPR, NUMBER, DIGITS (S is starting). Terminals: +,-,*, /, 0,...,9.
* We used separate NUMBER to avoid multiple “-”

And separate DIGITS to have an empty string to finish writing a number, but to avoid an empty number.

| Grammar ||
Police

Encoding order of precedence

e Easier to specify in which order to process parts
of the formula.
— Better grammar for arithmetic expressions (for
simplicity, with x,y,z instead of numbers):

1. EXPR - EXPR + TERM |EXPR — TERM| TERM
2. TERM —» TERM x FACTOR |TERM / FACTOR | FACTOR

3. FACTOR - (EXPR) | x|y |z

— Here, variables are EXPR, TERM and FACTOR (with
EXPR a starting variable).

— Now can encode precedence.
 And put parentheses more sensibly.

Parse trees.

e Visualization of derivations: parse trees.
- EXPR + TERM |EXPR — TERM|
- * | / |
- ()Ixlylz

e String (x+y)*z

— Simpler example: _—
- 05]51]_

e String 001 |

(
1 +
PN P \ \
0 0
S A —~—— I /
1 0 y

Puzzle

Do the following two English sentences have
the same parse trees?

— Time flies like an arrow. ——=X{

é

— Fruit flies like an apple.

	COMP 1002��Logic for Computer Scientists�
	Admin stuff
	Recursive definitions of sets
	Trees
	Arithmetic expressions
	Formulas
	Formulas
	Grammars
	Examples of grammars
	 Encoding order of precedence
	Parse trees.
	Puzzle

