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Admin stuff 

• Assignment 3 extension  
– Because of the power outage, assignment 3 now 

due on Tuesday,  March 14 (also 7pm) 
 

• Assignment 4 to be posted by tomorrow.  
– Due March 21st.  

 



Recursive definitions of sets  
• So far, we talked about recursive definitions of 

sequences.  We can also give recursive definitions of 
sets.  
– E.g:  recursive definition of a set S= 0,1 ∗ 

• Basis:  empty string is in S.  
• Recursive step:  if 𝑤𝑤 ∈ 𝑆𝑆,  then 𝑤𝑤𝑤 ∈ 𝑆𝑆  and 𝑤𝑤1 ∈ 𝑆𝑆  

– Here, 𝑤𝑤0 means string w with 0 appended at the end; same for w1  

– Alternatively: 
• Basis: empty string, 0 and 1 are in S.  
• Recursive step:  if s  and t are in S, then st ∈ 𝑆𝑆   

– here, st is concatenation: symbols of s followed by symbols of  t  
– If s = 101 and t= 0011, then st = 1010011 

– Additionally, need a restriction condition: the set S contains 
only elements produced from basis using recursive step rule.  



Trees  

• In computer science, a tree is an undirected 
graph without cycles  
– Undirected: all edges go both ways, no arrows.  
– Cycle: sequence of edges going back to the same 

point.  
• Recursive definition of trees:  

– Base: A single vertex         is a tree. 
– Recursion:   

• Let 𝑇𝑇 be a tree, and 𝑣𝑣 a new vertex.  
• Then a new tree consist of 𝑇𝑇, 𝑣𝑣, and an edge (connection) 

between some vertex of 𝑇𝑇 and 𝑣𝑣. 
– Restriction:  

• Anything that cannot be constructed with this rule  from 
this base is not a tree.  
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Arithmetic expressions 
• Suppose you are writing a piece of code that takes an 

arithmetic expression and, say evaluates it.  
– “5*3-1”,  “40-(x+1)*7”, etc 

• How to describe a valid arithmetic expression? Define 
a set of all valid arithmetic expressions recursively.  
– Base: A number or a variable is a valid arithmetic 

expression.  
• 5, 100, x, a, 

– Recursion:  
• If A and B are valid arithmetic expressions, then so are (A), 
𝐴𝐴 + 𝐵𝐵,𝐴𝐴 − 𝐵𝐵, 𝐴𝐴 ∗ 𝐵𝐵,𝐴𝐴 / B. 

– Constructing 40-(x+1)*7:  first construct 40, x, 1, 7. Then x+1. Then (x+1). 
Then (x+1)*7, finally 40-(x+1)*7 

– Caveat:  how do we know the order of evaluation? On that later. 

– Restriction:  nothing else is a valid arithmetic expression.  
 

 



Formulas 

• What is a well-formed propositional logic 
formula?  
– 𝑝𝑝 ∨ ¬𝑞𝑞 ∧ 𝑟𝑟 → ¬𝑝𝑝 → 𝑟𝑟  
– Base:  a propositional variable 𝑝𝑝, 𝑞𝑞, 𝑟𝑟…  

• Or a constant 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝐹𝐹𝐴𝐴𝐹𝐹𝑆𝑆𝑇𝑇 

– Recursion:  
• If F and G are propositional formulas, so are 𝐹𝐹 , ¬𝐹𝐹,
𝐹𝐹 ∧ 𝐺𝐺,𝐹𝐹 ∨ 𝐺𝐺,𝐹𝐹 → 𝐺𝐺,𝐹𝐹 ↔ 𝐺𝐺.  

– And nothing else.  



Formulas 

• What is a well-formed predicate logic formula?  
– ∃𝑥𝑥 ∈ 𝐷𝐷 ∀𝑦𝑦 ∈ ℤ  𝑃𝑃 𝑥𝑥,𝑦𝑦 ∨ 𝑄𝑄 𝑥𝑥, 𝑧𝑧 ∧ 𝑥𝑥 = 𝑦𝑦  
– Base:  a predicate with free variables 

• P(x),  x=y, …  
– Recursion:  

• If F and G are predicate logic formulas, so are 𝐹𝐹 , ¬𝐹𝐹, 𝐹𝐹 ∧
𝐺𝐺,𝐹𝐹 ∨ 𝐺𝐺,𝐹𝐹 → 𝐺𝐺,𝐹𝐹 ↔ 𝐺𝐺.  

• If 𝐹𝐹 is a predicate logic formula with a free variable x, then 
∃𝑥𝑥 ∈ 𝐷𝐷 𝐹𝐹   and  ∀𝑥𝑥 ∈ 𝐷𝐷 𝐹𝐹  are predicate logic formulas.  

– And nothing else.  
• So   ∃𝑥𝑥 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑃𝑃𝑃𝑃   𝐹𝐹𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿 𝑥𝑥,𝑦𝑦 ∧ 𝑥𝑥 , 𝐹𝐹𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿 𝑦𝑦 ≠ 𝑥𝑥  is not a 

well-formed predicate logic formula!  



Grammars 
• A general recursive definition for these is called a grammar.   

– In particular, here we have “context-free” grammars, where symbols have the same 
meaning wherever they are.  

• A context-free grammar consists of  
– A set V of variables (using capital letters)  

• Including a start variable S.    
– A set Σ of terminals (disjoint from V; alphabet)  
– A set R of rules, where each rule consists of a variable from V and a string of variables 

and terminals. 
• If 𝐴𝐴 → 𝑤𝑤 is a rule, we say variable 𝐴𝐴  yields string w.   

– This is not the same “→ " as implication, a different use of the same symbol.  
• We use shortcut “|” when the same variable might yield several possible strings:  
𝐴𝐴 → 𝑤𝑤1  𝑤𝑤2 … |𝑤𝑤𝑘𝑘  

• Can use A again within the rule: Recursion!   
– Different occurrences of the same variable can be interpreted as different strings.  

• When left with just terminals, a string is derived.  
• A language generated by a grammar consists of all strings of terminals that can 

be derived from the start variable by applying the rules.  
– All strings are derived by repeatedly applying the grammar rules to each variable until 

there are no variables left (just the terminals).    



Examples of grammars 
• Example:   language {1, 00} consisting of two strings 1 and 00 

– 𝑆𝑆 →   1 |  00 
• Variables: S. Terminals: 1 and 00.  

 
• Example:  strings over {0,1}  with all 0s before all 1s.  

– 𝑆𝑆 → 𝑤𝑆𝑆  𝑆𝑆𝑆  _ 
• Variables: S.  Terminals: 0 and 1.  

 
• Example:  propositional formulas.  

1. 𝐹𝐹 →   𝐹𝐹 ∨ 𝐹𝐹   
2. F → 𝐹𝐹 ∧ 𝐹𝐹   
3. 𝐹𝐹 →  ¬𝐹𝐹 
4. 𝐹𝐹 →  𝐹𝐹  
5.  𝐹𝐹 → 𝑝𝑝  𝑞𝑞 𝑟𝑟  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐹𝐹𝐴𝐴𝐹𝐹𝑆𝑆𝑇𝑇  

• Here,  the only variable is  F  (it is a start variable),  and terminals are ∨,∧, ¬, , ,𝑝𝑝, 𝑞𝑞, 𝑟𝑟,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝐹𝐹𝐴𝐴𝐹𝐹𝑆𝑆𝑇𝑇  
• To obtain 𝑝𝑝 ∨ ¬𝑞𝑞 ∧ 𝑟𝑟, first apply rule 2, then rule 1, then rule 5 to get p, then rule 3, then rule 5 to get q, then rule 5 to 

get r.  
 

• Example:  arithmetic expressions.  
– 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 → 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 + 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇   𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 − 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇  𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 ∗ 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 | 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇  / 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 | 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇   | 𝑁𝑁𝑇𝑇𝑁𝑁𝐵𝐵𝑇𝑇𝑇𝑇|-

NUMBER  
– NUMBER → 𝑤𝐷𝐷𝐷𝐷𝐺𝐺𝐷𝐷𝑇𝑇𝑆𝑆 … 9𝐷𝐷𝐷𝐷𝐺𝐺𝐷𝐷𝑇𝑇𝑆𝑆 
– 𝐷𝐷𝐷𝐷𝐺𝐺𝐷𝐷𝑇𝑇𝑆𝑆 →   _| 𝑁𝑁𝑇𝑇𝑁𝑁𝐵𝐵𝑇𝑇𝑇𝑇 

• Here, _ stands for empty string.  Variables: EXPR, NUMBER, DIGITS (S is starting).  Terminals: +,-,*, /, 0,…,9.   
• We used separate NUMBER to avoid multiple “-”.   
• And separate DIGITS to have an empty string to finish writing a number, but to avoid an empty number.    

 



  Encoding order of precedence 

• Easier to specify in which order to process parts 
of the formula.  
– Better grammar for arithmetic expressions (for 

simplicity, with x,y,z instead of numbers): 
1.  𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 → 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 |𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁| 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 
2. 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 → 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 ∗ 𝐹𝐹𝐴𝐴𝐹𝐹𝑇𝑇𝐹𝐹𝑇𝑇 | 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 / 𝐹𝐹𝐴𝐴𝐹𝐹𝑇𝑇𝐹𝐹𝑇𝑇 | 𝐹𝐹𝐴𝐴𝐹𝐹𝑇𝑇𝐹𝐹𝑇𝑇  
3. 𝐹𝐹𝐴𝐴𝐹𝐹𝑇𝑇𝐹𝐹𝑇𝑇 → 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇  | x | y | z 

– Here, variables are EXPR, TERM and FACTOR (with 
EXPR a starting variable).  

– Now can encode precedence. 
• And put parentheses more sensibly.   



Parse trees. 
• Visualization of derivations: parse trees.  

1. 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 → 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 |𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁| 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 
2. 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 → 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 ∗ 𝐹𝐹𝐴𝐴𝐹𝐹𝑇𝑇𝐹𝐹𝑇𝑇 | 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 / 𝐹𝐹𝐴𝐴𝐹𝐹𝑇𝑇𝐹𝐹𝑇𝑇 | 𝐹𝐹𝐴𝐴𝐹𝐹𝑇𝑇𝐹𝐹𝑇𝑇  
3. 𝐹𝐹𝐴𝐴𝐹𝐹𝑇𝑇𝐹𝐹𝑇𝑇 → 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇  | x | y | z 

•  String (x+y)*z 

– Simpler example: 
• 𝑆𝑆 → 0𝑆𝑆  𝑆𝑆1  _ 
• String 001  
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Puzzle 

• Do the following two English sentences have 
the same parse trees?  
 
– Time flies like an arrow.  

 
 

– Fruit flies like an apple.  
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