

Lecture 23

COMP 1002

Logic for Computer Scientists

B J 2 5

Admin stuff

• Assignment 3 extension
– Because of the power outage, assignment 3 now

due on Tuesday, March 14 (also 7pm)

• Assignment 4 to be posted by tomorrow.
– Due March 21st.

Recursive definitions of sets
• So far, we talked about recursive definitions of

sequences. We can also give recursive definitions of
sets.
– E.g: recursive definition of a set S= 0,1 ∗

• Basis: empty string is in S.
• Recursive step: if 𝑤𝑤 ∈ 𝑆𝑆, then 𝑤𝑤𝑤 ∈ 𝑆𝑆 and 𝑤𝑤1 ∈ 𝑆𝑆

– Here, 𝑤𝑤0 means string w with 0 appended at the end; same for w1

– Alternatively:
• Basis: empty string, 0 and 1 are in S.
• Recursive step: if s and t are in S, then st ∈ 𝑆𝑆

– here, st is concatenation: symbols of s followed by symbols of t
– If s = 101 and t= 0011, then st = 1010011

– Additionally, need a restriction condition: the set S contains
only elements produced from basis using recursive step rule.

Trees

• In computer science, a tree is an undirected
graph without cycles
– Undirected: all edges go both ways, no arrows.
– Cycle: sequence of edges going back to the same

point.
• Recursive definition of trees:

– Base: A single vertex is a tree.
– Recursion:

• Let 𝑇𝑇 be a tree, and 𝑣𝑣 a new vertex.
• Then a new tree consist of 𝑇𝑇, 𝑣𝑣, and an edge (connection)

between some vertex of 𝑇𝑇 and 𝑣𝑣.
– Restriction:

• Anything that cannot be constructed with this rule from
this base is not a tree.

1

2

3
Undirected cycle
(not a tree)

 𝑣𝑣
 𝑣𝑣1

 𝑣𝑣2 𝑣𝑣3

 𝑣𝑣4

 𝑣𝑣5

Arithmetic expressions
• Suppose you are writing a piece of code that takes an

arithmetic expression and, say evaluates it.
– “5*3-1”, “40-(x+1)*7”, etc

• How to describe a valid arithmetic expression? Define
a set of all valid arithmetic expressions recursively.
– Base: A number or a variable is a valid arithmetic

expression.
• 5, 100, x, a,

– Recursion:
• If A and B are valid arithmetic expressions, then so are (A),
𝐴𝐴 + 𝐵𝐵,𝐴𝐴 − 𝐵𝐵, 𝐴𝐴 ∗ 𝐵𝐵,𝐴𝐴 / B.

– Constructing 40-(x+1)*7: first construct 40, x, 1, 7. Then x+1. Then (x+1).
Then (x+1)*7, finally 40-(x+1)*7

– Caveat: how do we know the order of evaluation? On that later.

– Restriction: nothing else is a valid arithmetic expression.

Formulas

• What is a well-formed propositional logic
formula?
– 𝑝𝑝 ∨ ¬𝑞𝑞 ∧ 𝑟𝑟 → ¬𝑝𝑝 → 𝑟𝑟
– Base: a propositional variable 𝑝𝑝, 𝑞𝑞, 𝑟𝑟…

• Or a constant 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝐹𝐹𝐴𝐴𝐹𝐹𝑆𝑆𝑇𝑇

– Recursion:
• If F and G are propositional formulas, so are 𝐹𝐹 , ¬𝐹𝐹,
𝐹𝐹 ∧ 𝐺𝐺,𝐹𝐹 ∨ 𝐺𝐺,𝐹𝐹 → 𝐺𝐺,𝐹𝐹 ↔ 𝐺𝐺.

– And nothing else.

Formulas

• What is a well-formed predicate logic formula?
– ∃𝑥𝑥 ∈ 𝐷𝐷 ∀𝑦𝑦 ∈ ℤ 𝑃𝑃 𝑥𝑥,𝑦𝑦 ∨ 𝑄𝑄 𝑥𝑥, 𝑧𝑧 ∧ 𝑥𝑥 = 𝑦𝑦
– Base: a predicate with free variables

• P(x), x=y, …
– Recursion:

• If F and G are predicate logic formulas, so are 𝐹𝐹 , ¬𝐹𝐹, 𝐹𝐹 ∧
𝐺𝐺,𝐹𝐹 ∨ 𝐺𝐺,𝐹𝐹 → 𝐺𝐺,𝐹𝐹 ↔ 𝐺𝐺.

• If 𝐹𝐹 is a predicate logic formula with a free variable x, then
∃𝑥𝑥 ∈ 𝐷𝐷 𝐹𝐹 and ∀𝑥𝑥 ∈ 𝐷𝐷 𝐹𝐹 are predicate logic formulas.

– And nothing else.
• So ∃𝑥𝑥 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑃𝑃𝑃𝑃 𝐹𝐹𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿 𝑥𝑥,𝑦𝑦 ∧ 𝑥𝑥 , 𝐹𝐹𝐿𝐿𝐿𝐿𝑃𝑃𝐿𝐿 𝑦𝑦 ≠ 𝑥𝑥 is not a

well-formed predicate logic formula!

Grammars
• A general recursive definition for these is called a grammar.

– In particular, here we have “context-free” grammars, where symbols have the same
meaning wherever they are.

• A context-free grammar consists of
– A set V of variables (using capital letters)

• Including a start variable S.
– A set Σ of terminals (disjoint from V; alphabet)
– A set R of rules, where each rule consists of a variable from V and a string of variables

and terminals.
• If 𝐴𝐴 → 𝑤𝑤 is a rule, we say variable 𝐴𝐴 yields string w.

– This is not the same “→ " as implication, a different use of the same symbol.
• We use shortcut “|” when the same variable might yield several possible strings:
𝐴𝐴 → 𝑤𝑤1 𝑤𝑤2 … |𝑤𝑤𝑘𝑘

• Can use A again within the rule: Recursion!
– Different occurrences of the same variable can be interpreted as different strings.

• When left with just terminals, a string is derived.
• A language generated by a grammar consists of all strings of terminals that can

be derived from the start variable by applying the rules.
– All strings are derived by repeatedly applying the grammar rules to each variable until

there are no variables left (just the terminals).

Examples of grammars
• Example: language {1, 00} consisting of two strings 1 and 00

– 𝑆𝑆 → 1 | 00
• Variables: S. Terminals: 1 and 00.

• Example: strings over {0,1} with all 0s before all 1s.

– 𝑆𝑆 → 𝑤𝑆𝑆 𝑆𝑆𝑆 _
• Variables: S. Terminals: 0 and 1.

• Example: propositional formulas.

1. 𝐹𝐹 → 𝐹𝐹 ∨ 𝐹𝐹
2. F → 𝐹𝐹 ∧ 𝐹𝐹
3. 𝐹𝐹 → ¬𝐹𝐹
4. 𝐹𝐹 → 𝐹𝐹
5. 𝐹𝐹 → 𝑝𝑝 𝑞𝑞 𝑟𝑟 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐹𝐹𝐴𝐴𝐹𝐹𝑆𝑆𝑇𝑇

• Here, the only variable is F (it is a start variable), and terminals are ∨,∧, ¬, , ,𝑝𝑝, 𝑞𝑞, 𝑟𝑟,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝐹𝐹𝐴𝐴𝐹𝐹𝑆𝑆𝑇𝑇
• To obtain 𝑝𝑝 ∨ ¬𝑞𝑞 ∧ 𝑟𝑟, first apply rule 2, then rule 1, then rule 5 to get p, then rule 3, then rule 5 to get q, then rule 5 to

get r.

• Example: arithmetic expressions.
– 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 → 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 + 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 − 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 ∗ 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 | 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 / 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 | 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 | 𝑁𝑁𝑇𝑇𝑁𝑁𝐵𝐵𝑇𝑇𝑇𝑇|-

NUMBER
– NUMBER → 𝑤𝐷𝐷𝐷𝐷𝐺𝐺𝐷𝐷𝑇𝑇𝑆𝑆 … 9𝐷𝐷𝐷𝐷𝐺𝐺𝐷𝐷𝑇𝑇𝑆𝑆
– 𝐷𝐷𝐷𝐷𝐺𝐺𝐷𝐷𝑇𝑇𝑆𝑆 → _| 𝑁𝑁𝑇𝑇𝑁𝑁𝐵𝐵𝑇𝑇𝑇𝑇

• Here, _ stands for empty string. Variables: EXPR, NUMBER, DIGITS (S is starting). Terminals: +,-,*, /, 0,…,9.
• We used separate NUMBER to avoid multiple “-”.
• And separate DIGITS to have an empty string to finish writing a number, but to avoid an empty number.

 Encoding order of precedence

• Easier to specify in which order to process parts
of the formula.
– Better grammar for arithmetic expressions (for

simplicity, with x,y,z instead of numbers):
1. 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 → 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 |𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁| 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁
2. 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 → 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 ∗ 𝐹𝐹𝐴𝐴𝐹𝐹𝑇𝑇𝐹𝐹𝑇𝑇 | 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 / 𝐹𝐹𝐴𝐴𝐹𝐹𝑇𝑇𝐹𝐹𝑇𝑇 | 𝐹𝐹𝐴𝐴𝐹𝐹𝑇𝑇𝐹𝐹𝑇𝑇
3. 𝐹𝐹𝐴𝐴𝐹𝐹𝑇𝑇𝐹𝐹𝑇𝑇 → 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 | x | y | z

– Here, variables are EXPR, TERM and FACTOR (with
EXPR a starting variable).

– Now can encode precedence.
• And put parentheses more sensibly.

Parse trees.
• Visualization of derivations: parse trees.

1. 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 → 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 |𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁| 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁
2. 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 → 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 ∗ 𝐹𝐹𝐴𝐴𝐹𝐹𝑇𝑇𝐹𝐹𝑇𝑇 | 𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁 / 𝐹𝐹𝐴𝐴𝐹𝐹𝑇𝑇𝐹𝐹𝑇𝑇 | 𝐹𝐹𝐴𝐴𝐹𝐹𝑇𝑇𝐹𝐹𝑇𝑇
3. 𝐹𝐹𝐴𝐴𝐹𝐹𝑇𝑇𝐹𝐹𝑇𝑇 → 𝑇𝑇𝐸𝐸𝑃𝑃𝑇𝑇 | x | y | z

• String (x+y)*z

– Simpler example:
• 𝑆𝑆 → 0𝑆𝑆 𝑆𝑆1 _
• String 001

EXPR

TERM

EXPR

TERM FACTOR

FACTOR z

()

*

EXPR TERM +

TERM

FACTOR

FACTOR

x

y

(x + y) * z

S

S

S

1

0

0

S

_

 0 0 1

S

S

S

0

1

0

S

_
 0 0 1

Puzzle

• Do the following two English sentences have
the same parse trees?

– Time flies like an arrow.

– Fruit flies like an apple.

	COMP 1002��Logic for Computer Scientists�
	Admin stuff
	Recursive definitions of sets
	Trees
	Arithmetic expressions
	Formulas
	Formulas
	Grammars
	Examples of grammars
	 Encoding order of precedence
	Parse trees.
	Puzzle

