

COMP 1002

Logic for Computer Scientists

Lecture 22

Admin stuff

• Assignment 3 is posted

– Due Monday, March 13

Puzzle: all horses are white

- Claim: all horses are white.
- Proof (by induction):
 - P(n): any n horses are white.
 - Base case: P(0) holds vacuously
 - Induction hypothesis: any k horses are white.
 - Induction step: if any k horses are white, then any k+1 horses are white.
 - Take an arbitrary set of k+1 horses. Take a horse out.
 - The remaining k horses are white by induction hypothesis.
 - Now put that horse back in, and take out another horse.
 - Remaining k horses are again white by induction hypothesis.
 - Therefore, all the k+1 horses in that set are white.
 - By induction, all horses are white.

Sums, products and sequences

- How to write long sums, e.g., 1+2+... (n-1)+n concisely?
 - Sum notation ("sum from 1 to n"): $\sum_{i=1}^{n} i = 1 + 2 + \dots + n$
 - If n=3, $\sum_{i=1}^{3} i = 1+2+3=6$.
 - The name "*i*" does not matter. Could use another letter not yet in use.
- In general, let $f: \mathbb{Z} \to \mathbb{R}$, $m, n \in \mathbb{Z}$, $m \le n$.
 - $-\sum_{i=m}^{n} f(i) = f(m) + f(m+1) + \dots + f(n)$
 - If m=n, $\sum_{i=m}^{n} f(i) = f(m) = f(n)$.
 - If n=m+1, $\sum_{i=m}^{n} f(i) = f(m)+f(m+1)$
 - If n>m, $\sum_{i=m}^{n} f(i) = (\sum_{i=m}^{n-1} f(i)) + f(n)$
 - Example: $f(x) = x^2$. $2^2 + 3^2 + 4^2 = \sum_{i=2}^4 i^2 = 29$
- Similarly for product notation (product from m to n):

$$- \prod_{i=m}^{n} f(i) = f(m) \cdot f(m+1) \cdot \dots \cdot f(n) = (\prod_{i=m}^{n-1} f(i)) \cdot f(n)$$

- For $f(x) = x$, $2 \cdot 3 \cdot 4 = \prod_{i=2}^{4} i = 24$
- $1 \cdot 2 \cdot \dots \cdot n = \prod_{i=1}^{n} i = n!$ (n factorial)

Recurrences and sequences

- To define a sequence (of things), describe the process which generates that sequence.
 - Sequence: enumeration of objects $s_1, s_2, s_3, \dots, s_n, \dots$,
 - Sometimes use notation $\{s_n\}$ for the sequence (i.e., set of elements forming a sequence)
 - **Basis (initial conditions):** what are the first (few) element(s) in the sequence.
 - $\sum_{i=0}^{0} i = 0$. $\sum_{i=m}^{m} i = m$.
 - 0! = 1. 1!=1.
 - $A_0 = \emptyset$
 - Recurrence (recursion step, inductive definition): a rule to make a next element from already constructed ones.
 - $\sum_{i=m}^{n+1} i = (\sum_{i=m}^{n} i) + (n+1)$. Here, assume that $m \le n$
 - $(n+1)! = n! \cdot (n+1)$
 - $A_{n+1} = \mathcal{P}(A_n)$
- Resulting sequences:
 - m, 2m+1, 3m+3, ...
 - 1, 2,6, 24, 120, ...
 - $\ \emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \ \left\{\emptyset, \{\emptyset\}\}, \ \left\{\emptyset, \{\emptyset\}\}\right\}, \ \left\{\emptyset, \{\emptyset\}\}\right\}, \ \dots$

Special sequences

- Arithmetic progression:
 - Sequence: $c, c + d, c + 2d, c + 3d, \dots, c + nd, \dots$
 - Recursive definition:
 - Basis: $s_0 = c$, for some $c \in \mathbb{R}$
 - Recurrence: $s_{n+1} = s_n + d$, where $d \in \mathbb{R}$ is a fixed number.
 - Closed form: $s_n = c + nd$
 - Closed forms are very useful for analysis of recursive programs, etc.
- Geometric progression:
 - Sequence: $c, cr, cr^2, cr^3, ..., cr^n, ...$
 - Recursive definition:
 - Basis: $s_0 = c$, for some $c \in \mathbb{R}$
 - Recurrence: $s_{n+1} = s_n \cdot r$, where $r \in \mathbb{R}$ is a fixed number.
 - Closed form: $s_n = c \cdot r^n$

Fibonacci sequence

a

- Imagine that a ship leaves a pair of rabbits on an island (with a lot of food).
- After a pair of rabbits reaches 2 months of age, they produce another pair of rabbits, which in turn starts reproducing when reaching 2 months of age...
- How many pairs rabbits will be on the island in n months, assuming no rabbits die?

• Basis:
$$F_1 = 1$$
, $F_2 = 1$

- Recurrence: $F_n = F_{n-1} + F_{n-2}$
- Sequence: 1,1,2,3,5,8,13...
- Closed form: $F_n = \frac{\varphi^{n} (1-\varphi)^n}{\sqrt{5}}$
 - Golden ratio: φ

$$-\varphi = \frac{a+b}{a} = \frac{a}{b} = \frac{1+\sqrt{5}}{2}$$

MY MY MY MY MY

XXXXXXXXXX

Partial sums

- Properties of a sum:
 - $-\sum_{i=m}^{n} f(i) + g(i) = \sum_{i=m}^{n} f(i) + \sum_{i=m}^{n} g(i)$
 - $-\sum_{i=m}^{n} c \cdot f(i) = c \sum_{i=m}^{n} f(i)$
- Sum of arithmetic progression:
 - $s_n = c + nd$ for some c, $d \in \mathbb{R}$
 - Sequence: $c, c + d, c + 2d, c + 3d, \dots, c + nd, \dots$
 - Partial sum:
 - $\sum_{i=0}^{n} s_n = \sum_{i=0}^{n} (c+id) = \sum_{i=0}^{n} c + \sum_{i=0}^{n} id = c(n+1) + d \sum_{i=0}^{n} i = c(n+1) + d \frac{n(n+1)}{2}$
- Sum of geometric progression:
 - $s_n = c \cdot r^n$ for some $c, r \in \mathbb{R}$
 - Sequence: $c, cr, cr^2, cr^3, \dots, cr^n, \dots$
 - Partial sum:
 - If r=1, then $\sum_{i=0}^{n} s_n = c(n+1)$
 - If $r \neq 1$, then $\sum_{i=0}^{n} s_n = \frac{cr^{n+1}-c}{r-1}$

Fractals

- Can use recursive definitions to define fractals
 - And draw them
 - And prove their properties.
- Self-similar: a part looks like the whole.

Fractals in nature

- A fern leaf
- Broccoli
- Mountains
- Stock market
- Heat beat

Mathematical fractals

• Koch curve and snowflake

• Sierpinski triangle, pyramid, carpet

• Hilbert space-filling curve

Mandelbrot set

Koch curve

- *Basis:* an interval
- Recursive step: Replace the inner third of the interval with two of the same length

Playing with fractals

- Fractal Grower by Joel Castellanos:
- <u>http://www.cs.unm.edu/~joel/PaperFoldingFr</u> <u>actal/paper.html</u>

Tower of Hanoi game

- Rules of the game:
 - Start with all disks on the first peg.
 - At any step, can move a disk to another peg, as long as it is not placed on top of a smaller disk.
 - Goal: move the whole tower onto the second peg.
- Question: how many steps are needed to move the tower of 8 disks? How about n disks?