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Admin stuff 

• Assignment 3 is posted  
– Due Monday,  March 13 

 



Puzzle: all horses are white 
• Claim: all horses are white.  
• Proof (by induction):  

– P(n):  any n horses are white.  
– Base case:  P(0) holds vacuously 
– Induction hypothesis: any k horses are white.  
– Induction step: if any k horses are white, then 

any k+1 horses are white.  
• Take an arbitrary set of k+1 horses.  Take a horse out.  

– The remaining k horses are white by induction 
hypothesis.  

• Now put that horse back in, and take out another 
horse.   

– Remaining k horses are again white by induction 
hypothesis.  

• Therefore, all the k+1 horses in that set are white. 
– By induction, all horses are white.  



Sums, products and sequences 
• How to write long sums, e.g., 1+2+… (n-1)+n concisely?  

– Sum notation (“sum from 1 to n”):  ∑ 𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 1 + 2 +  … + 𝑛𝑛  

• If n=3, ∑ 𝑖𝑖3
𝑖𝑖=1  = 1+2+3=6.   

• The name “𝑖𝑖𝑖 does not matter. Could use another letter not yet in use. 
• In general, let  𝑓𝑓:ℤ → ℝ,  𝑚𝑚,𝑛𝑛 ∈ ℤ,𝑚𝑚 ≤ 𝑛𝑛. 

– ∑ 𝑓𝑓(𝑖𝑖)𝑛𝑛
𝑖𝑖=𝑚𝑚  =  𝑓𝑓 𝑚𝑚 + 𝑓𝑓 𝑚𝑚 + 1 + ⋯+ 𝑓𝑓 𝑛𝑛  
• If m=n, ∑ 𝑓𝑓(𝑖𝑖)𝑛𝑛

𝑖𝑖=𝑚𝑚  =f(m)=f(n).  
• If n=m+1, ∑ 𝑓𝑓(𝑖𝑖)𝑛𝑛

𝑖𝑖=𝑚𝑚  = f(m)+f(m+1)  
• If n>m,   ∑ 𝒇𝒇(𝒊𝒊)𝒏𝒏

𝒊𝒊=𝒎𝒎  = (∑ 𝒇𝒇(𝒊𝒊)𝒏𝒏−𝟏𝟏
𝒊𝒊=𝒎𝒎 ) + 𝒇𝒇(𝒏𝒏) 

• Example: 𝑓𝑓 𝑥𝑥 = 𝑥𝑥2.    22 + 32 + 42 = ∑ 𝑖𝑖24
𝑖𝑖=2 = 29  

• Similarly for product notation (product from m to n):  
– Π𝑖𝑖=𝑚𝑚𝑛𝑛  𝑓𝑓 𝑖𝑖 = 𝑓𝑓 𝑚𝑚 ⋅ 𝑓𝑓 𝑚𝑚 + 1 ⋅ … ⋅ 𝑓𝑓 𝑛𝑛  = (𝜫𝜫𝒊𝒊=𝒎𝒎

𝒏𝒏−𝟏𝟏  𝒇𝒇 𝒊𝒊 ) ⋅ 𝒇𝒇(𝒏𝒏) 
– For  𝑓𝑓 𝑥𝑥 = 𝑥𝑥,  2 ⋅ 3 ⋅ 4  = Π𝑖𝑖=24  𝑖𝑖 = 24  
– 1 ⋅ 2 ⋅ … ⋅ 𝑛𝑛 = Π𝑖𝑖=1𝑛𝑛  𝑖𝑖 = 𝑛𝑛!  (n factorial) 



Recurrences and sequences 
• To define a sequence (of things), describe the process which generates that 

sequence. 
– Sequence:  enumeration of objects 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, … , 𝑠𝑠𝑛𝑛, … ,  

• Sometimes use notation 𝑠𝑠𝑛𝑛  for the sequence (i.e., set of elements forming a sequence) 
– Basis (initial conditions): what are the first (few) element(s) in the sequence.  

• ∑ 𝑖𝑖0
𝑖𝑖=0 = 0. ∑ 𝑖𝑖𝑚𝑚

𝑖𝑖=𝑚𝑚  = m.  
• 0! = 1.  1!=1.  
• A0 =  ∅ 

– Recurrence (recursion step, inductive definition): a rule to make a next element 
from already constructed ones.  

•  ∑ 𝑖𝑖𝑛𝑛+1
𝑖𝑖=𝑚𝑚 = ∑ 𝑖𝑖𝑛𝑛

𝑖𝑖=𝑚𝑚 + 𝑛𝑛 + 1 .  Here, assume that 𝑚𝑚 ≤ 𝑛𝑛  
• (n+1)! = n! ⋅ (n+1)  
• 𝐴𝐴𝑛𝑛+1 =  P(𝐴𝐴𝑛𝑛)  

• Resulting sequences:  
– m, 2m+1, 3m+3, …  
– 1, 2,6, 24, 120, …  

– ∅, ∅ , ∅, ∅ , ∅, ∅ , ∅ , ∅, ∅ , … 
 



Special sequences 

• Arithmetic progression:  
– Sequence:  𝑐𝑐, 𝑐𝑐 + 𝑑𝑑, 𝑐𝑐 + 2𝑑𝑑, 𝑐𝑐 + 3𝑑𝑑, … , 𝑐𝑐 + 𝑛𝑛𝑛𝑛, …  
– Recursive definition:  

• Basis:  𝑠𝑠0 = c,  for some c∈ ℝ 
• Recurrence: 𝑠𝑠𝑛𝑛+1 = sn + d, where 𝑑𝑑 ∈ ℝ is a fixed number.  

– Closed form:  𝑠𝑠𝑛𝑛 = 𝑐𝑐 + 𝑛𝑛𝑛𝑛    
• Closed forms are very useful for analysis of recursive programs, etc. 

• Geometric progression:  
– Sequence:  𝑐𝑐, 𝑐𝑐𝑐𝑐, 𝑐𝑐𝑟𝑟2, 𝑐𝑐𝑟𝑟3, … , 𝑐𝑐𝑟𝑟𝑛𝑛, …  
– Recursive definition: 

• Basis: 𝑠𝑠0 = c,  for some c∈ ℝ 
• Recurrence: 𝑠𝑠𝑛𝑛+1 = sn ⋅ 𝑟𝑟, where r∈ ℝ is a fixed number.  

– Closed form:  𝑠𝑠𝑛𝑛 = 𝑐𝑐 ⋅ 𝑟𝑟𝑛𝑛 
 

 
 
 



Fibonacci sequence 
• Imagine that a ship leaves a pair of rabbits on an 

island (with a lot of food).  
• After a pair of rabbits reaches 2 months of age, they 

produce another pair of rabbits, which in turn starts 
reproducing when reaching 2 months of age…  

•  How many pairs rabbits will be on the island in n 
months, assuming no rabbits die?  

• Basis:  𝐹𝐹1 = 1, F2 = 1 
• Recurrence: 𝐹𝐹𝑛𝑛 = 𝐹𝐹𝑛𝑛−1 + 𝐹𝐹𝑛𝑛−2 
• Sequence:  1,1,2,3,5,8,13…   
• Closed form: 𝐹𝐹𝑛𝑛 = 𝜑𝜑𝑛𝑛− 1−𝜑𝜑 𝑛𝑛

√5
 

– Golden ratio: 𝜑𝜑 
– 𝜑𝜑 = 𝑎𝑎+𝑏𝑏

𝑎𝑎
= 𝑎𝑎

𝑏𝑏
= 1+ 5

2
  

 



Partial sums 
• Properties of a sum:  

– ∑ 𝑓𝑓 𝑖𝑖 + 𝑔𝑔 𝑖𝑖 = 𝑛𝑛
𝑖𝑖=𝑚𝑚  ∑ 𝑓𝑓(𝑖𝑖)𝑛𝑛

𝑖𝑖=𝑚𝑚 + ∑ 𝑔𝑔(𝑖𝑖)𝑛𝑛
𝑖𝑖=𝑚𝑚  

– ∑ 𝑐𝑐 ⋅ 𝑓𝑓(𝑖𝑖)𝑛𝑛
𝑖𝑖=𝑚𝑚 = 𝑐𝑐 ∑ 𝑓𝑓(𝑖𝑖)𝑛𝑛

𝑖𝑖=𝑚𝑚  
• Sum of arithmetic progression:  

– 𝑠𝑠𝑛𝑛 = 𝑐𝑐 + 𝑛𝑛𝑛𝑛   for some c,𝑑𝑑 ∈ ℝ 
– Sequence:  𝑐𝑐, 𝑐𝑐 + 𝑑𝑑, 𝑐𝑐 + 2𝑑𝑑, 𝑐𝑐 + 3𝑑𝑑, … , 𝑐𝑐 + 𝑛𝑛𝑛𝑛, …  
– Partial sum:  

• ∑ 𝑠𝑠𝑛𝑛𝑛𝑛
𝑖𝑖=0 =  ∑ (𝑐𝑐 + 𝑖𝑖𝑖𝑖 𝑛𝑛

𝑖𝑖=0 ) = ∑ 𝑐𝑐 𝑛𝑛
𝑖𝑖=0 + ∑ 𝑖𝑖𝑖𝑖 𝑛𝑛

𝑖𝑖=0 =
 c(n + 1) + d∑ 𝑖𝑖 = 𝑐𝑐(𝑛𝑛 + 1) + 𝑑𝑑 𝑛𝑛 𝑛𝑛+1

2
𝑛𝑛
𝑖𝑖=0  

• Sum of geometric progression:  
– 𝑠𝑠𝑛𝑛 = 𝑐𝑐 ⋅ 𝑟𝑟𝑛𝑛 for some c, 𝑟𝑟 ∈ ℝ 
– Sequence:  𝑐𝑐, 𝑐𝑐𝑐𝑐, 𝑐𝑐𝑟𝑟2, 𝑐𝑐𝑟𝑟3, … , 𝑐𝑐𝑟𝑟𝑛𝑛, …  
– Partial sum:   

•  If r=1, then  ∑ 𝑠𝑠𝑛𝑛𝑛𝑛
𝑖𝑖=0 = 𝑐𝑐 𝑛𝑛 + 1    

• If 𝑟𝑟 ≠ 1,  then ∑ 𝑠𝑠𝑛𝑛𝑛𝑛
𝑖𝑖=0 =  𝑐𝑐𝑟𝑟𝑛𝑛+1−𝑐𝑐𝑟𝑟−1   

 
 

 
 
 
 



Fractals 

• Can use recursive definitions to define fractals 
– And draw them 
– And prove their properties.  

• Self-similar: a part looks like the whole.  



Fractals in nature 
• A fern leaf 

 
• Broccoli 
 
• Mountains 

 
• Stock market  

 
• Heat beat     



Mathematical fractals 

• Koch curve and snowflake 
 

• Sierpinski triangle, pyramid, carpet 
 

• Hilbert space-filling curve 
 

• Mandelbrot set  



Koch curve 

• Basis: an interval 
• Recursive step: 

Replace the inner third 
of the interval with 
two of the same 
length 

• … 



Playing with fractals 

• Fractal Grower by  Joel Castellanos:   
• http://www.cs.unm.edu/~joel/PaperFoldingFr

actal/paper.html  

http://www.cs.unm.edu/%7Ejoel/PaperFoldingFractal/paper.html
http://www.cs.unm.edu/%7Ejoel/PaperFoldingFractal/paper.html


Tower of Hanoi game 

• Rules of the game:  
– Start with all disks on the first peg.  
– At any step, can move a disk to another peg, as long as it is 

not placed on top of a smaller disk.  
– Goal:  move the whole tower onto the second peg.  

• Question:  how many steps are needed to move the 
tower of 8 disks? How about n disks?    
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