

COMP 1002

Logic for Computer Scientists

Lecture 21

Admin stuff

Assignment 3 is posted

– Due Monday, March 13

- For the lab this Wednesday, please read definitions in slides for Lecture 19
 - which we did not have time to cover on Tuesday before the midterm

Sum of numbers formula

- Claim: for any $n \in \mathbb{N}$, $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$
- Proof.
 - Suppose not.

Gauss' proof:
1 + 2 + ... + 99 + 100 +
100 + 99 + ... + 2 + 1 =
101 + 101 + ... + 101 + 101 = 100*101
So 1+2+ ... + 99 + 100 =
$$\frac{100*101}{2}$$

Works for any n, not just n=100

- Let S be a set of all numbers n' such that $\sum_{i=0}^{n'} i \neq \frac{n'(n'+1)}{2}$. By well-ordering principle, if $S \neq \emptyset$, then there is the least number k in S.
- Case 1: k=0. But $\sum_{i=0}^{0} i = 0 = \frac{0(0+1)}{2}$. So formula works for k=0.

- Case 2: k>0. Then
$$k - 1 \ge 0$$
.

- So $\sum_{i=0}^{k} i = (\sum_{i=0}^{k-1} i) + k$.
- As k is the smallest bad number, the formula works for k-1.

• So
$$\sum_{i=0}^{k-1} i = \frac{(k-1)k}{2}$$

• Now,
$$\sum_{i=0}^{k} i = (\sum_{i=0}^{k-1} i) + k = \frac{(k-1)k}{2} + k = \frac{k^2 - k + 2k}{2} = \frac{k^2 + k}{2} = \frac{k(k+1)}{2}$$

• So the formula works for k>0, too.

- Contradiction. So S is empty, thus the formula works for all $n \in \mathbb{N}$.

Mathematical induction

- Want to prove a statement $\forall x \in \mathbb{N} \ P(x)$.
 - Check that P(0) holds
 - And whenever P(k) does not hold for some k, P(k-1) does not hold either
 - Contradicting well-ordering principle.
 - Contrapositive:
 - if P(k-1) holds for arbitrary k,
 - then P(k) also must be true.
 - Conclude that $\forall x \in \mathbb{N} \ P(x)$

Mathematical induction

- Want to prove a statement $\forall x \in \mathbb{N} \ P(x)$.
 - Check that P(0) holds

Proving that P(0) holds is called the **base case**.

- And whenever P(k) does not hold for some k, P(k-1) does not hold either
 - Contradicting well-ordering principle.
 - Contrapositive: That P(k-1) holds is an induction hypothesis
 - if P(k-1) holds for arbitrary k,
 - then P(k) also must be true.

Proving that $P(k-1) \rightarrow P(k)$ Is the **induction step**

- Conclude that $\forall x \in \mathbb{N} \ P(x)$

Mathematical Induction principle: If $P(0) \land \forall k \in \mathbb{N}$ $P(k) \rightarrow P(k+1)$ then $\forall x \in \mathbb{N} P(x)$

Sum of numbers formula

- Claim: for any $n \in \mathbb{N}$, $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$
- Proof (by induction).
 - P(n) is $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$ (statement we are proving by induction on n)
 - Base case: k=0. Then $\sum_{i=0}^{0} i = 0 = \frac{0(0+1)}{2}$.
 - Induction hypothesis: Assume that $\sum_{i=0}^{k-1} i = \frac{(k-1)k}{2}$ for an arbitrary k >0
 - That is, for an arbitrary number $k-1 \in \mathbb{N}$
 - Can take k instead of k-1, but k-1 makes calculations simpler.
 - Induction step: show that P(k-1) implies P(k).
 - $\sum_{i=0}^{k} i = (\sum_{i=1}^{k-1} i) + k.$
 - By induction hypothesis, $\sum_{i=1}^{k-1} i = \frac{(k-1)k}{2}$
 - Now, $\sum_{i=1}^{k} i = (\sum_{i=1}^{k-1} i) + k = \frac{(k-1)k}{2} + k = \frac{k^2 k + 2k}{2} = \frac{k^2 + k}{2} = \frac{k(k+1)}{2}$
 - By induction, therefore, P(n) holds for all $n \in \mathbb{N}$.

Changing the base case

- Mathematical Induction principle:
 - $(P(0) \land \forall k \in \mathbb{N} \ P(k) \to P(k+1)) \to \forall x \in \mathbb{N} \ P(x)$
- What if want to prove it only for $x \ge a$?
 - Make *a* the base case (when $a \ge 0$). For the rest, assume $k \ge a$.
 - $(P(a) \land \forall k \ge a \ P(k) \rightarrow P(k+1)) \rightarrow \forall x \ge a \ P(x)$
 - Here, $\forall x \ge a \ P(x)$ is a shorthand for $\forall x \in \mathbb{N} \ (x \ge a \rightarrow P(x))$
 - To prove it works, prove P(n') where n'=n-a.
- Example: show that for all $n \ge 4$, $2^n \ge n^2$
 - $P(n): 2^n \ge n^2$
 - Base case: n=4, $2^4 = 16 = 4^2$
 - Induction hypothesis: assume that for an arbitrary $k \ge a$, $2^k \ge k^2$
 - Induction step: show that $2^k \ge k^2$ implies $2^{k+1} \ge (k+1)^2$
 - $2^{k+1} = 2 \cdot 2^k = 2^k + 2^k > k^2 + k^2$
 - $(k+1)^2 = k^2 + 2k + 1$.
 - Want: $k^2 + k^2 \ge k^2 + 2k + 1$. so $k^2 > 2k + 1$
 - Dividing both sides of the inequality by k: $k \ge 2 + \frac{1}{k}$
 - Since $k \ge 4$, and $2 + \frac{1}{k} \le 3$, $2 + \frac{1}{k} \le 3 < 4 \le k$. So $k \ge 2 + \frac{1}{k}$ and thus $k^2 \ge 2k + 1$ So $2^{k+1} = 2 \cdot 2^k = 2^k + 2^k \ge k^2 + k^2 \ge k^2 + 2k + 1 = (k+1)^2$
 - By induction, for all $n \ge 4$, $2^n \ge n^2$
- Corollary: as n grows, an algorithm running in time n^2 will quickly outperform an algorithm running in time 2^n

Strong induction

- For our coins problem, needed not just P(k-1), but P(k-3), and to look at three cases.
- Mathematical Induction principle: $-(P(0) \land \forall k \in \mathbb{N} \ P(k) \rightarrow P(k+1)) \rightarrow \forall x \in \mathbb{N} \ P(x)$
- Strong Induction principle:

$$-\left(\exists b \in \mathbb{N} \ \forall c \in \mathbb{N} \ \left(0 \le c \land c \le b \to P(c)\right)\right)$$

$$\land \forall k > b \ \left(\forall i \in \{0, \dots, k-1\} \ P(i)\right) \to P(k)\right)$$

$$\to \forall x \in \mathbb{N} \ P(x)$$

- Strong induction seems stronger...
 - But in fact, mathematical induction, strong induction and well-order principles are equivalent to each other.
 - So choose the most convenient one.

Puzzle: coins

- A not-too-far-away country recently got rid of a penny coin, and now everything needs to be rounded to the nearest multiple of 5 cents...
 - Suppose that instead of just dropping the penny, they would introduce a 3 cent coin.
 - Like British three pence.
 - What is the largest amount that cannot be paid by using only existing coins (5, 10, 25) and a 3c coin?

Any number n >7 can be paid with 3,5,10,25 coins (even just 3 and 5).

Strong induction

• Strong Induction principle (general form):

$$- (\exists b \in \mathbb{N} \ \forall c \in \mathbb{N} (a \leq c \land c \leq b \to P(c)) \land \forall k > b (\forall i \in \{a, ..., k-1\} P(i)) \to P(k)) \to \forall x \in \mathbb{N} (x \geq a \to P(x))$$

- Coins: $\forall x \in \mathbb{N}$, if x >7 then $\exists y, z \in \mathbb{N}$ such that x = 3y+5z.
 - − P(n): $\exists y, z \in \mathbb{N}$ n = 3y + 5z. Also, a=8.
 - Base cases: b = 10, so $c \in \{8,9,10\}$
 - n=8. $8 = 3 \cdot 1 + 5 \cdot 1$, so y=1, z=1.
 - n=9. 9=3·3, y=3, z=0
 - n=10. 10=5 · 5. y=0, z=2.
 - Induction hypothesis: Let k be an arbitrary integer such that k > 10. Assume that for all $i \in \mathbb{N}$ such that $8 \le i < k \exists y_i, z_i \in \mathbb{N}$ $i = 3y_i + 5z_i$
 - Induction step. Show that induction hypothesis implies that $\exists y, z \in \mathbb{N}$ k = 3y + 5z
 - Since $k \ge b$, $k-3 \ge a$. So by induction hypothesis $\exists y_{k-3}, z_{k-3} \in \mathbb{N}$ $k-3 = 3y_{k-3} + 5z_{k-3}$. Now take $z=z_{k-3}$ and $y = y_{k-3} + 1$. Then k = 3y+5z.
 - By strong induction, get that for all x > 7, $\exists y, z \in \mathbb{N}$ such that x = 3y+5z.

Puzzle: all horses are white

- Claim: all horses are white.
- Proof (by induction):
 - P(n): any n horses are white.
 - Base case: P(0) holds vacuously
 - Induction hypothesis: any k horses are white.
 - Induction step: if any k horses are white, then any k+1 horses are white.
 - Take an arbitrary set of k+1 horses. Take a horse out.
 - The remaining k horses are white by induction hypothesis.
 - Now put that horse back in, and take out another horse.
 - Remaining k horses are again white by induction hypothesis.
 - Therefore, all the k+1 horses in that set are white.
 - By induction, all horses are white.

