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Admin stuff 

• Assignment 3 is posted  
– Due Monday,  March 13 

 

• For the lab this Wednesday, please read 
definitions in slides for Lecture 19  
– which we did not have time to cover on Tuesday 

before the midterm 



Sum of numbers formula 

• Claim: for any n∈ ℕ, ∑ 𝑖𝑖𝑛𝑛
𝑖𝑖=0 = 𝑛𝑛 𝑛𝑛+1

2
 

•  Proof.  
– Suppose not.   

– Let S be a set of all numbers n’ such that ∑ 𝑖𝑖𝑛𝑛′
𝑖𝑖=0 ≠ 𝑛𝑛′ 𝑛𝑛′+1

2
.  By well-

ordering principle, if 𝑆𝑆 ≠ ∅, then  there is the least number k in S.  

– Case 1:  k=0.  But ∑ 𝑖𝑖0
𝑖𝑖=0 = 0 = 0 0+1

2
. So formula works for k=0.   

– Case 2:  k>0.  Then  𝑘𝑘 − 1 ≥ 0.   
• So  ∑ 𝑖𝑖𝑘𝑘

𝑖𝑖=0 = (∑ 𝑖𝑖𝑘𝑘−1
𝑖𝑖=0 ) +k.   

• As k is the smallest bad number, the formula works for k-1.   

• So ∑ 𝑖𝑖  𝑘𝑘−1
𝑖𝑖=0 = k−1 k

2
 

• Now, ∑ 𝑖𝑖𝑘𝑘
𝑖𝑖=0 = (∑ 𝑖𝑖𝑘𝑘−1

𝑖𝑖=0 ) +k = k−1 k
2

+ k = k2−k+2k
2

= k2+𝑘𝑘
2

= 𝑘𝑘(𝑘𝑘+1)
2

 
• So the formula works for k>0, too.   

– Contradiction. So S is empty, thus the formula works for all 𝑛𝑛 ∈ ℕ. 
 

Gauss’ proof:   
1     +  2   +  … + 99  + 100 + 
100 + 99  + … +  2    + 1     =  
101 + 101+ … +101 + 101 =100*101 
So 1+2+ … + 99 + 100 =100∗101

2
 

Works for any n, not just n=100  



Mathematical induction 

• Want to prove a statement  ∀𝑥𝑥 ∈ ℕ  𝑃𝑃 𝑥𝑥 .   
– Check that 𝑃𝑃 0  holds  
– And whenever 𝑃𝑃 𝑘𝑘  does not hold for some k, 
𝑃𝑃 𝑘𝑘 − 1  does not hold either 

• Contradicting well-ordering principle.   
• Contrapositive:   

– if  P(k-1) holds for arbitrary k,  
– then P(k) also must be true. 

– Conclude that ∀𝑥𝑥 ∈ ℕ  𝑃𝑃 𝑥𝑥    
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Proving that P(0) holds  
 is called the base case.  

That P(k-1) holds is an induction hypothesis  

Proving that P(k-1) → P(k)   
Is the induction step  

Mathematical Induction principle:   
If  P 0 ∧ ∀ 𝑘𝑘 ∈ ℕ   P(k) → P(k+1) then  ∀𝑥𝑥 ∈ ℕ 𝑃𝑃(𝑥𝑥)  



Sum of numbers formula 

• Claim: for any n∈ ℕ,  ∑ 𝑖𝑖𝑛𝑛
𝑖𝑖=0 = 𝑛𝑛 𝑛𝑛+1

2
 

•  Proof (by induction). 
– P(n)  is  ∑ 𝑖𝑖𝑛𝑛

𝑖𝑖=0 = 𝑛𝑛 𝑛𝑛+1
2

  (statement we are proving by induction on n)  

– Base case:  k=0.  Then ∑ 𝑖𝑖0
𝑖𝑖=0 = 0 = 0 0+1

2
.  

– Induction hypothesis: Assume that ∑ 𝑖𝑖𝑘𝑘−1
𝑖𝑖=0 = 𝑘𝑘−1 𝑘𝑘 

2
 for an arbitrary k >0 

• That is, for an arbitrary number k-1 ∈ ℕ  
• Can take k instead of k-1, but k-1 makes calculations simpler.   

–  Induction step:  show that P(k-1) implies P(k).  
• ∑ 𝑖𝑖𝑘𝑘

𝑖𝑖=0 = (∑ 𝑖𝑖𝑘𝑘−1
𝑖𝑖=1 ) +k.   

• By induction hypothesis,  ∑ 𝑖𝑖  𝑘𝑘−1
𝑖𝑖=1 = k−1 k

2
 

• Now, ∑ 𝑖𝑖𝑘𝑘
𝑖𝑖=1 = (∑ 𝑖𝑖𝑘𝑘−1

𝑖𝑖=1 ) +k = k−1 k
2

+ k = k2−k+2k
2

= k2+𝑘𝑘
2

= 𝑘𝑘(𝑘𝑘+1)
2

   
– By induction, therefore,  P(n) holds for all 𝑛𝑛 ∈ ℕ. 

 



Changing the base case 
• Mathematical Induction principle:   

– (P 0 ∧ ∀ 𝑘𝑘 ∈ ℕ   P(k) → P(k+1))   → ∀𝑥𝑥 ∈ ℕ 𝑃𝑃(𝑥𝑥)  
 

• What if want to prove it only for 𝑥𝑥 ≥ 𝑎𝑎? 
– Make 𝑎𝑎 the base case (when 𝑎𝑎 ≥ 0).  For the rest, assume 𝑘𝑘 ≥ 𝑎𝑎.   
– (P a ∧ ∀ 𝑘𝑘 ≥ 𝑎𝑎   P(k) → P(k+1))   → ∀𝑥𝑥 ≥ 𝑎𝑎  𝑃𝑃(𝑥𝑥)  

• Here,  ∀𝑥𝑥 ≥ 𝑎𝑎   𝑃𝑃 𝑥𝑥   is a shorthand for ∀𝑥𝑥 ∈ ℕ   𝑥𝑥 ≥ 𝑎𝑎 → 𝑃𝑃 𝑥𝑥  
– To prove it works, prove P(n’) where n’=n-a.    

 
• Example: show that for all 𝑛𝑛 ≥ 4, 2𝑛𝑛 ≥ 𝑛𝑛2 

– 𝑃𝑃 𝑛𝑛 :    2𝑛𝑛 ≥ 𝑛𝑛2   
– Base case:  n=4. 24 = 16 = 42 
– Induction hypothesis: assume that for an arbitrary 𝑘𝑘 ≥ 𝑎𝑎,  2𝑘𝑘 ≥ 𝑘𝑘2  
– Induction step:  show that 2𝑘𝑘 ≥ 𝑘𝑘2  implies 2𝑘𝑘+1 ≥ (𝑘𝑘 + 1)2  

• 2𝑘𝑘+1 = 2 ⋅ 2𝑘𝑘 = 2𝑘𝑘 + 2𝑘𝑘 ≥ 𝑘𝑘2 + 𝑘𝑘2  
• 𝑘𝑘 + 1 2 = 𝑘𝑘2 + 2𝑘𝑘 + 1.   
• Want: 𝑘𝑘2 + 𝑘𝑘2 ≥ 𝑘𝑘2 + 2𝑘𝑘 + 1, so 𝑘𝑘2 ≥ 2𝑘𝑘 + 1 

– Dividing both sides of the inequality by k:   𝑘𝑘 ≥ 2 + 1
𝑘𝑘

 

– Since k ≥ 4, and 2 + 1
𝑘𝑘
≤ 3,  2 + 1

𝑘𝑘
≤ 3 < 4 ≤ 𝑘𝑘.  So 𝑘𝑘 ≥ 2 + 1

𝑘𝑘
 and thus 𝑘𝑘2 ≥ 2𝑘𝑘 + 1 

• So 2𝑘𝑘+1 = 2 ⋅ 2𝑘𝑘 = 2𝑘𝑘 + 2𝑘𝑘 ≥ 𝑘𝑘2 + 𝑘𝑘2 ≥ 𝑘𝑘2 + 2𝑘𝑘 + 1 = 𝑘𝑘 + 1 2 
– By induction, for all 𝑛𝑛 ≥ 4, 2𝑛𝑛 ≥ 𝑛𝑛2 

• Corollary:  as n grows, an algorithm running  in time  𝑛𝑛2 will quickly outperform an 
algorithm running in time 2𝑛𝑛 

 
 

 
 

 



Strong induction 
• For our coins problem, needed not just P(k-1),  but 

P(k-3), and to look at three cases.    
• Mathematical Induction principle:   

– (P 0 ∧ ∀ 𝑘𝑘 ∈ ℕ   P(k) → P(k+1))   → ∀𝑥𝑥 ∈ ℕ 𝑃𝑃(𝑥𝑥)  
• Strong Induction principle:   

– ∃𝑏𝑏 ∈ ℕ  ∀𝑐𝑐 ∈ ℕ 0 ≤ 𝑐𝑐 ∧ 𝑐𝑐 ≤ 𝑏𝑏 →  P c  
  ∧ ∀ 𝑘𝑘 > 𝑏𝑏   (∀ 𝑖𝑖 ∈ {0, … ,𝑘𝑘 − 1}  P(i)) →  P(k))   
     → ∀𝑥𝑥 ∈ ℕ 𝑃𝑃(𝑥𝑥)  

• Strong induction seems stronger…  
– But in fact, mathematical induction, strong induction and 

well-order principles are equivalent to each other. 
– So choose the most convenient one.   

 
 



Puzzle:  coins  

• A not-too-far-away country recently got rid of 
a penny coin,  and now everything needs to be 
rounded to the nearest multiple of 5 cents…   
– Suppose that instead of just dropping the penny, 

they would introduce a 3 cent coin. 
• Like British three pence.    

– What is the largest amount that cannot be paid by 
using only existing coins (5, 10, 25) and a 3c coin?  

7c 
Any number n >7 can be paid with 3,5,10,25 coins (even just 3 and 5).  



Strong induction 
• Strong Induction principle (general form):   

– (∃𝑏𝑏 ∈ ℕ  ∀𝑐𝑐 ∈ ℕ 𝑎𝑎 ≤ 𝑐𝑐 ∧ 𝑐𝑐 ≤ 𝑏𝑏 →  P c  
   ∧ ∀ 𝑘𝑘 > 𝑏𝑏   (∀ 𝑖𝑖 ∈ {𝑎𝑎, … , 𝑘𝑘 − 1}  P(i)) → P(k))  
                       → ∀𝑥𝑥 ∈ ℕ 𝑥𝑥 ≥ 𝑎𝑎 →  𝑃𝑃 𝑥𝑥   

• Coins:  ∀𝑥𝑥 ∈ ℕ, if x >7 then ∃ 𝑦𝑦, 𝑧𝑧 ∈ ℕ such that x = 3y+5z.    
– P(n):   ∃ 𝑦𝑦, 𝑧𝑧 ∈ ℕ  𝑛𝑛 = 3𝑦𝑦 + 5𝑧𝑧 .  Also, a=8.  
– Base cases: b = 10, so 𝑐𝑐 ∈ 8,9,10    

• n=8.    8 = 3 ⋅ 1 + 5 ⋅ 1, so y=1, z=1.  
• n=9.    9=3⋅ 3,  y=3, z=0 
• n=10.  10=5 ⋅ 5.  y=0, z=2.  

– Induction hypothesis: Let k be an arbitrary integer such that 𝑘𝑘 > 10.  
Assume that for all 𝑖𝑖 ∈ ℕ such that 8 ≤ 𝑖𝑖 < 𝑘𝑘 ∃ 𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖 ∈ ℕ   𝑖𝑖 = 3𝑦𝑦𝑖𝑖 + 5𝑧𝑧𝑖𝑖 

– Induction step. Show that induction hypothesis implies that ∃ 𝑦𝑦, 𝑧𝑧 ∈ ℕ  𝑘𝑘 =
3𝑦𝑦 + 5𝑧𝑧  

• Since 𝑘𝑘 ≥ 𝑏𝑏,  𝑘𝑘 − 3 ≥ 𝑎𝑎. So by induction hypothesis ∃ 𝑦𝑦𝑘𝑘−3, 𝑧𝑧𝑘𝑘−3 ∈ ℕ   𝑘𝑘 − 3 =
3𝑦𝑦𝑘𝑘−3 + 5𝑧𝑧𝑘𝑘−3.  Now take z=𝑧𝑧𝑘𝑘−3  and y = 𝑦𝑦𝑘𝑘−3 +1.   Then k = 3y+5z.  

– By strong induction, get that for all x > 7, ∃ 𝑦𝑦, 𝑧𝑧 ∈ ℕ such that x = 3y+5z. 
 

 



Puzzle: all horses are white 
• Claim: all horses are white.  
• Proof (by induction):  

– P(n):  any n horses are white.  
– Base case:  P(0) holds vacuously 
– Induction hypothesis: any k horses are white.  
– Induction step: if any k horses are white, then 

any k+1 horses are white.  
• Take an arbitrary set of k+1 horses.  Take a horse out.  

– The remaining k horses are white by induction 
hypothesis.  

• Now put that horse back in, and take out another 
horse.   

– Remaining k horses are again white by induction 
hypothesis.  

• Therefore, all the k+1 horses in that set are white. 
– By induction, all horses are white.  
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