

COMP 1002

Intro to Logic for Computer Scientists

Lecture 2

Admin stuff

• Labs: Wed 9am. First lab Jan 18th.

- CS-1019 (section 1, up to 60)

- EN-1049 (section 2, up to 10)

Twins puzzle

- There are two identical twin brothers, Dave and Jim.
- One of them always lies; another always tells the truth.
- Suppose you see one of them and you want to find out his name.
- How can you learn if you met Dave or Jim by asking just one short yes-no question? You don't know which one of them is the liar.

- There are two identical twin brothers, Dave and Jim.
- One of them always lies; another always tells the truth
- Suppose you see one of them and you want to find out his name.
- How can you learn if you met Dave or Jim by asking just one short yes-no question? You don't know which one of them is the liar.

This is Jim	Jim is a liar		
Yes	Yes		
Yes	No		
No	Yes		
No	No		

- There are two identical twin brothers, Dave and Jim.
- One of them always lies; another always tells the truth.
- Suppose you see one of them and you want to find out his name.
- How can you learn if you met Dave or Jim by asking just one short yes-no question? You don't know which one of them is the liar.

This is Jim	Jim is a liar	This is a liar		
Yes	Yes	Yes		
Yes	Νο	No		
No	Yes	No		
No	No	Yes		

- There are two identical twin brothers, Dave and Jim.
- One of them always lies; another always tells the truth.
- Suppose you see one of them and you want to find out his name.
- How can you learn if you met Dave or Jim by asking just one short yes-no question? You don't know which one of them is the liar.

This is Jim	Jim is a liar	This is a liar	Are you Jim?	
Yes	Yes	Yes	No	
Yes	Νο	No	Yes	
No	Yes	No	No	
No	No	Yes	Yes	

- There are two identical twin brothers, Dave and Jim.
- One of them always lies; another always tells the truth.
- Suppose you see one of them and you want to find out his name.
- How can you learn if you met Dave or Jim by asking just one short yes-no question? You don't know which one of them is the liar.

This is Jim	Jim is a liar	This is a liar	Are you Jim?	Is 2+2=4?	
Yes	Yes	Yes	No	No	
Yes	No	No	Yes	Yes	
No	Yes	No	No	Yes	
No	No	Yes	Yes	No	

- There are two identical twin brothers, Dave and Jim.
- One of them always lies; another always tells the truth.
- Suppose you see one of them and you want to find out his name.
- How can you learn if you met Dave or Jim by asking just one short yes-no question? You don't know which one of them is the liar.

	This is Jim	Jim is a liar	This is a liar	Are you Jim?	ls 2+2=4?	Is Dave a liar?
(Yes	Yes	Yes	No	No (Yes
(Yes	Νο	No	Yes	Yes (Yes
	No	Yes	No	No	Yes	No
	No	No	Yes	Yes	No	No

Language of logic: building blocks

- **Proposition**: A sentence that can be *true* or *false*.
 - A: "It is raining in St. John's right now".
 - B: "2+2=7"
 - But not "Hi!" or "x is an even number"
- Propositional variables:
 - A, B, C (or p, q, r)
 - It is a shorthand to denote propositions:
 - "B is true", for the B above, means "2+2=7" is true.

Language of logic: connectives 🐒

Pronunciation	Notation	Meaning
A and B (conjunction)	ΑΛΒ	True if both A and B are true
A or B (disjunction)	AVB	True if either A or B are true (or both)
If A then B (implication)	$A \to B$	True whenever if A is true, then B is also true
Not A (negation)	¬ A	Opposite of A is true, $\neg A$ is true when A is false

- Let A be "It is sunny" and B be "it is cold"
 - A ∧ B: It is sunny and cold
 - A V B: It is either sunny or cold
 - $A \rightarrow B$: If it is sunny, then it is cold
 - ¬ A: It is not sunny

Language of logic

 Now we can combine these operations to make longer formulas

Pronunciation	Notation	True when
A and B	ΑΛΒ	Both A and B must be true
A or B	AVB	Either A or B must be true (or both)
If A then B	$A \rightarrow B$	if A is true, then B is also true
Not A	¬ A	Opposite of A is true

• Precedence: \neg first, then \land , then \lor , \rightarrow last

- \neg is like a unary minus, \land like * and \lor like +

•
$$A \land \neg B \lor \neg C \to A$$
 is $((A \land (\neg B)) \lor (\neg C)) \to A$

- When in doubt or need a different order, use parentheses
- $A \lor B \land C$ is not the same as $(A \lor B) \land C$

Language of logic

- Let
 - A be "It is sunny", 😓
 - B be "it is cold",

- C be "It's snowing"
- What are the translations of: IF (👾 AND 🗼)
 - $B \wedge C \rightarrow \neg A$
 - If it is cold and snowing, then it is not sunny
 - IF 🖓 THEN (• $B \rightarrow (C \lor A)$
 - If it is cold, then it is either snowing or sunny
 - IF (NOT 🔅 AND 🤅) THEN $\neg A \land A \rightarrow C$
 - If it is sunny and not sunny, then it is snowing.

Pronunciation	Notation	True when
A and B	А∕\В	Both A and B must be true
A or B	А∖∕В	Either A or B must be true (or both)
If A then B	A -> B	if A is true, then B is also true
Not A	~A	Opposite of A is true

THEN NOT

OR 🍋

The truth

- We talk about a sentence being true or false when the values of the variables are known.
 - If we didn't know whether it is sunny, we would not know whether A \land B \rightarrow C is true or false.
- **Truth assignment:** setting values of variables to true/false.

A=true, B=false, C=false.

- Satisfying assignment for a sentence: assignment that makes it true.
 - (Otherwise, falsifying assignment).
 - A=true, B=false, C= false satisfies $A \land B \rightarrow C$
 - A=true, B=true, C=false falsifies $A \land B \rightarrow C$

"if ... then" in logic

• Last class' puzzle has a logical structure:

"if A then B"

- What circumstances make this true?
 - A is true and B is true
 - A is true and B is false
 - A is false and B is true
 - A is false and B is false

Truth tables

Α	В	not A	A and B	A or B	if A then B
True	True	False	True	True	True
True	False	False	False	True	False
False	True	True	False	True	True
False	False	True	False	False	True

Α	В
True	True
True	False
False	True
False	False

- Let
 - A be "It is sunny"
 - B be "it is cold"
- It is sunny and cold.
- It is sunny and not cold
- It is not sunny and cold
- It is neither sunny nor cold

• Let

- A be "It is sunny"
- B be "it is cold"
- It is sunny and cold.
- It is sunny and not cold
- It is not sunny and cold
- It is neither sunny nor cold
- Now, $\neg A \lor B$ is:
 - Same as $A \rightarrow B$
 - So $\neg A \lor B$ and $A \rightarrow B$ are equivalent.

Truth tables

Α	В	not A	A and B	A or B	if A then B
True	True	False	True	True	True
True	False	False	False	True	False
False	True	True	False	True	True
False	False	True	False	False	True

Α	В	(Not A) or B
True	True	True
True	False	False
False	True	True
False	False	True

Knights and knaves

• On a mystical island, there are two kinds of people: knights and knaves.

Knights always say the truth.

• Knaves always lie.

 On a mystical island, there are two kinds of people: knights and knaves. Knights always tell the truth. Knaves always lie.

 Puzzle 1: You meet two people on the island, Arnold and Bob. Arnold says "Either I am a knave, or Bob is a knight". Is Arnold a knight or a knave? What about Bob?