COMP 1002

Logic for Computer Scientists

Lecture 19
Admin stuff

• **Midterm March 2nd**.
 – Closed-book.
 – Covers lectures 1 to 16.
 • Mainly labs 1, 2, 3, 4 and assignments 1 and 2.
 – Study guide posted to help you study
 • **not** to bring to the midterm itself.
 – Sample midterm is posted.
 • I will not be posting solutions, but will be happy to give you feedback on yours.

• Assignments 1 and 2 are marked.
 • Except for several assignments 2, will be ready in a couple of hours.
 – Read your feedback on D2L
 – Let me know as soon as possible if you have questions about your mark.

• Lab 5 moved from the week before the break to this Wednesday.
Relations

- A relation is a subset of a Cartesian product of sets.
 - If of two sets (set of pairs), call it a **binary** relation.
 - Of 3 sets (set of triples), **ternary**. Of k sets (set of tuples), **k-ary**

- $A=\{1,2,3\}$, $B=\{a,b\}$
 - $A \times B = \{(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)\}$
 - $R = \{(1,a), (2,b), (3,a), (3,b)\}$ is a relation. So is $R=\{(1,b)\}$.

- $A=\{1,2\}$,
 - $A \times A = \{(1,1), (1,2), (2,1), (2,2)\}$
 - $R=\{(1,1), (2,2)\}$ (all pairs (x,y) where $x=y$)
 - $R=\{(1,1), (1,2), (2,2)\}$ (all pairs (x,y) where $x \leq y$).

- $A=$PEOPLE
 - COUPLES $=\{(x,y) \mid \text{Loves}(x,y)\}$
 - PARENTS $=\{(x,y) \mid \text{Parent}(x,y)\}$

- $A=$PEOPLE, $B=$DOGS, $C=$PLACES
 - WALKS $=\{(x,y,z) \mid x \text{ walks } y \text{ in } z\}$
 - Jane walks Buddy in Bannerman park.
Types of binary relations

• A binary relation $R \subseteq A \times A$ is

 – **Reflexive** if $\forall x \in A, R(x, x)$

 • Every x is related to itself.
 • E.g. $A=\{1,2\}, R_1 = \{(1,1), (2,2), (1,2)\}$
 • On $A = \mathbb{Z}$, $R_2 = \{(x, y)|x = y\}$ is reflexive
 • But not $R_3 = \{(x, y)|x < y\}$

 – **Symmetric** if $\forall x, y \in A, (x, y) \in R \iff (y, x) \in R$

 • R_1 and R_3 above are not symmetric. R_2 is.
 • $A = \mathbb{Z}, R_4 = \{(x, y)|x \equiv y \text{ mod } 3\}$ is symmetric.

 – **Transitive** if $\forall x, y, z \in A, (x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R$

 • R_1, R_2, R_3, R_4 are all transitive.
 • $R_5 = \{(x, y)|x, y \in \mathbb{Z} \land x + 1 = y\}$ is not transitive.
 • $\text{PARENT} = \{(x, y)|x, y \in \text{PEOPLE} \land x \text{ is a parent of } y\}$ is not.
 • A **transitive closure** of a relation R is a relation $R^* = \{(x, z)|\exists k \in \mathbb{N} \exists y_0, ..., y_k \in A \ (x = y_0 \land z = y_k \land \forall i \in \{0, ..., k - 1\} R(y_i, y_{i+1})\}$

 – That is, can get from x to z following R arrows.
Types of binary relations

• A binary relation \(R \subseteq A \times A \) is
 – **Anti-reflexive** if \(\forall x \in A, \neg R(x, x) \)
 • \(R \) can be neither reflexive nor anti-reflexive.
 • E.g. \(A=\{1,2\}, \ R_6 = \{(1,2)\} \)
 – but not \(R_1 = \{(1,1), (2,2), (1,2)\} \) (reflexive)
 – nor \(R_7 = \{(1,1), (1,2)\} \) (neither)
 • For \(A = \mathbb{Z} \), not \(R_2 = \{(x, y)|x = y\} \)
 – Nor \(R_4 = \{(x, y)|x \equiv y \ mod \ 3\} \)
 • But \(R_3 = \{(x, y)|x < y\} \) is anti-reflexive.
 – So are \(R_5 = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} | x + 1 = y\} \)
 – And \(\text{PARENT} = \{(x, y) \in \text{PEOPLE} \times \text{PEOPLE} | x \ is \ a \ parent \ of \ y\} \)
 – **Anti-symmetric** if \(\forall x, y \in A, (x, y) \in R \land (y, x) \in R \rightarrow x = y \)
 • \(R_1, R_3, R_5, R_6, R_7, \text{PARENT} \) are anti-symmetric. \(R_4 \) is not.
 • \(R_2 \) is both symmetric and anti-symmetric.
 • \(R_8 = \{(1,2), (2,1), (1,3)\} \) is neither symmetric nor anti-symmetric.
Equivalence

• A binary relation \(R \subseteq A \times A \) is an **equivalence** if \(R \) is reflexive, symmetric and transitive.

 • E.g. \(A = \{1,2\} \), \(R = \{(1,1), (2,2)\} \) or \(R = A \times A \)

 • Not \(R_1 = \{(1,1), (2,2), (1,2)\} \) nor \(R_3 = \{(x, y) | x < y\} \)

 • On \(A = \mathbb{Z} \), \(R_2 = \{(x, y) | x = y\} \) is an equivalence

 • So is \(R_4 = \{(x, y) | x \equiv y \mod 3 \} \)

 – Reflexive: \(\forall x \in \mathbb{Z}, \ x \equiv x \mod 3 \)

 – Symmetric: \(\forall x, y \in \mathbb{Z}, \ x \equiv y \mod 3 \rightarrow y \equiv x \mod 3 \)

 – Transitive: \(\forall x, y, z \in \mathbb{Z}, \ x \equiv y \mod 3 \land y \equiv z \mod 3 \rightarrow x \equiv z \mod 3 \)

• An equivalence relation partitions \(A \) into **equivalence classes**:

 – Intersection of any two equivalence classes is \(\emptyset \)

 – Union of all equivalence classes is \(A \).

 – \(R_4: \mathbb{Z} = \{x | x \equiv 0 \mod 3\} \cup \{x | x \equiv 1 \mod 3\} \cup \{x | x \equiv 2 \mod 3\} \)

 – \(R = A \times A \) gives rise to a single equivalence class.
 \(R = \{(1,1), (2,2)\} \) to two.
Partial and total orders

- A binary relation \(R \subseteq A \times A \) is an order if \(R \) is reflexive, anti-symmetric and transitive.
 - \(R \) is a total order if \(\forall x, y \in A \ R(x, y) \lor R(y, x) \)
 - That is, every two elements of \(A \) are related.
 - E.g. \(R_1 = \{(x, y) | x, y \in \mathbb{Z} \land x \leq y\} \) is a total order.
 - So is alphabetical order of English words.
 - But not \(R_2 = \{(x, y) | x, y \in \mathbb{Z} \land x < y\} \)
 - not reflexive, so not an order.
 - Otherwise, \(R \) is a partial order.

- \(\text{SUBSETS} = \{(A, B) | A, B \text{ are sets } \land A \subseteq B \} \) is a partial order.
 - Reflexive: \(\forall A, A \subseteq A \)
 - Anti-symmetric: \(\forall A, B \ A \subseteq B \land B \subseteq A \rightarrow A = B \)
 - Transitive: \(\forall A, B, C \ A \subseteq B \land B \subseteq C \rightarrow A \subseteq C \)
 - Not total: if \(A = \{1, 2\} \) and \(B = \{1, 3\} \), then neither \(A \subseteq B \) nor \(B \subseteq A \)
- \(\text{DIVISORS} = \{(x, y) | x, y \in \mathbb{N} \land x, y \geq 2 \land \exists z \in \mathbb{N} \ y = z \cdot x\} \) is a partial order.
- \(\text{PARENT} \) is not an order. But \(\text{ANCESTOR} \) would be, if defined so that each person is an ancestor of themselves. It is a partial order.

- An order may have minimal and maximal elements (maybe multiple)
 - \(x \in A \) is minimal in \(R \) if \(\forall y \in A \ y \neq x \rightarrow \lnot R(y, x) \)
 - and maximal if \(\forall y \in A \ y \neq x \rightarrow \lnot R(x, y) \)
 - \(\emptyset \) is minimal in \(\text{SUBSETS} \) (its unique minimum); universe is maximal (its unique maximum).
 - All primes are minimal in \(\text{DIVISORS} \), and there are no maximal elements.
Puzzle: coins

• A not-too-far-away country recently got rid of a penny coin, and now everything needs to be rounded to the nearest multiple of 5 cents...
 – Suppose that instead of just dropping the penny, they would introduce a 3 cent coin.
 • Like British three pence.
 – What is the largest amount that cannot be paid by using only existing coins (5, 10, 25) and a 3c coin?