

COMP 1002

Logic for Computer Scientists

Lecture 19

Admin stuff

• Midterm March 2nd.

- Closed-book.
- Covers lectures 1 to 16.
 - Mainly labs 1, 2, 3, 4 and assignments 1 and 2.
- Study guide posted to help you study
 - **not** to bring to the midterm itself.
- Sample midterm is posted.
 - I will not be posting solutions, but will be happy to give you feedback on yours.
- Assignments 1 and 2 are marked.
 - Except for several assignments 2, will be ready in a couple of hours.
 - Read your feedback on D2L
 - Let me know as soon as possible if you have questions about your mark.

• Lab 5 moved from the week before the break to this Wednesday.

Relations

- A relation is a subset of a Cartesian product of sets.
 - If of two sets (set of pairs), call it a **binary** relation.
 - Of 3 sets (set of triples), ternary. Of k sets (set of tuples), k-ary
 - A={1,2,3}, B={a,b}
 - $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$
 - R = {(1,a), (2,b),(3,a), (3,b)} is a relation. So is R={(1,b)}.
 - A={1,2},
 - $A \times A = \{(1,1), (1,2), (2,1), (2,2)\}$
 - R={(1,1), (2,2)} (all pairs (x,y) where x=y)
 - $R=\{(1,1),(1,2),(2,2)\}$ (all pairs (x,y) where $x \le y$).
 - A=PEOPLE
 - COUPLES ={(x,y) | Loves(x,y)}
 - PARENTS ={(x,y) | Parent(x,y)}
 - A=PEOPLE, B=DOGS, C=PLACES
 - WALKS = {(x,y,z) | x walks y in z}
 - Jane walks Buddy in Bannerman park.

Graph of R (bipartite)

Graph of {(1,1),(2,2)}

Types of binary relations

- A binary relation $R \subseteq A \times A$ is
 - **Reflexive** if $\forall x \in A, R(x, x)$
 - Every x is related to itself.
 - E.g. A={1,2}, $R_1 = \{ (1,1), (2,2), (1,2) \}$
 - On A = \mathbb{Z} , $R_2 = \{(x, y) | x = y\}$ is reflexive
 - But not $R_3 = \{(x, y) | x < y\}$
 - Symmetric if $\forall x, y \in A$, $(x, y) \in R \leftrightarrow (y, x) \in R$
 - R_1 and R_3 above are not symmetric. R_2 is.
 - A = \mathbb{Z} , $R_4 = \{(x, y) | x \equiv y \mod 3\}$ is symmetric.
 - **Transitive** if $\forall x, y, z \in A$, $(x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R$
 - R_1, R_2, R_3, R_4 are all transitive.
 - $R_5 = \{(x, y) | x, y \in \mathbb{Z} \land x + 1 = y\}$ is not transitive.
 - PARENT = $\{(x, y) | x, y \in PEOPLE \land x \text{ is a parent of } y\}$ is not.
 - A transitive closure of a relation R is a relation $R^* = \{(x, z) | \exists k \in \mathbb{N} | \exists y_0, \dots, y_k \in A \ (x = y_0 \land z = y_k \land \forall i \in \{0, \dots, k-1\} R(y_i, y_{i+1})\}$
 - That is, can get from x to z following R arrows.

 R_1

Types of binary relations

- A binary relation $R \subseteq A \times A$ is
 - Anti-reflexive if $\forall x \in A, \neg R(x, x)$

Graph of {(1,2)}

- R can be neither reflexive nor anti-reflexive.
- E.g. A={1,2}, $R_6 = \{(1,2)\}$
 - but not $R_1 = \{ (1,1), (2,2), (1,2) \}$ (reflexive)
 - nor $R_7 = \{(1,1), (1,2)\}$ (neither)
- For $A = \mathbb{Z}$, not $\frac{R_2}{R_2} = \{(x, y) | x = y\}$
 - Nor $R_4 = \{(x, y) | x \equiv y \mod 3 \}$
- But $R_3 = \{(x, y) | x < y\}$ is anti-reflexive.
 - So are $R_5 = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x + 1 = y\}$
 - And PARENT = { $(x, y) \in PEOPLE \times PEOPLE | x \text{ is a parent of } y$ }

- Anti-symmetric if $\forall x, y \in A, (x, y) \in R \land (y, x) \in R \rightarrow x = y$

- $R_1, R_3, R_5, R_6, R_7, PARENT$ are anti-symmetric. R_4 is not.
- R_2 is both symmetric and anti-symmetric.
- $R_8 = \{(1,2), (2,1), (1,3)\}$ is neither symmetric nor anti-symmetric.

Equivalence

- A binary relation R ⊆ A × A is an equivalence if R is reflexive, symmetric and transitive.
 - E.g. A={1,2}, $R = \{(1,1), (2,2)\}$ or $R = A \times A$
 - Not $R_1 = \{ (1,1), (2,2), (1,2) \}$ nor $R_3 = \{ (x,y) | x < y \}$
 - On A = \mathbb{Z} , $R_2 = \{(x, y) | x = y\}$ is an equivalence
 - So is $R_4 = \{(x, y) | x \equiv y \mod 3 \}$
 - Reflexive: $\forall x \in \mathbb{Z}, x \equiv x \mod 3$
 - Symmetric: $\forall x, y \in \mathbb{Z}$, $x \equiv y \mod 3 \rightarrow y \equiv x \mod 3$
 - Transitive: $\forall x, y, z \in \mathbb{Z}, x \equiv y \mod 3 \land y \equiv z \mod 3 \rightarrow x \equiv z \mod 3$
- An equivalence relation partitions A into **equivalence classes**:
 - Intersection of any two equivalence classes is \emptyset
 - Union of all equivalence classes is A.
 - R_4 : $\mathbb{Z} = \{x \mid x \equiv 0 \mod 3\} \cup \{x \mid x \equiv 1 \mod 3\} \cup \{x \mid x \equiv 2 \mod 3\}$
 - $R = A \times A$ gives rise to a single equivalence class. $R = \{(1,1), (2,2)\}$ to two.

- That is, every two elements of A are related.
- E.g. $R_1 = \{(x, y) | x, y \in \mathbb{Z} \land x \le y\}$ is a total order.
- So is alphabetical order of English words.
- But not $R_2 = \{(x, y) | x, y \in \mathbb{Z} \land x < y\}$
 - not reflexive, so not an order.
- Otherwise, R is a partial order.
 - SUBSETS = { $(A, B) \mid A, B \text{ are sets } \land A \subseteq B$ } is a partial order.
 - Reflexive: $\forall A, A \subseteq A$
 - Anti-symmetric: $\forall A, B \ A \subseteq B \land B \subseteq A \rightarrow A = B$
 - Transitive: $\forall A, B, C \ A \subseteq B \land B \subseteq C \rightarrow A \subseteq C$
 - Not total: if A ={1,2} and B ={1,3}, then neither $A \subseteq B$ nor $B \subseteq A$
 - DIVISORS = {(x,y) | $x, y \in \mathbb{N} \land x, y \ge 2 \land \exists z \in \mathbb{N} \ y = z \cdot x$ } is a partial order.

Partial and total orders

- PARENT is not an order. But ANCESTOR would be, if defined so that each person is an ancestor of themselves. It is a partial order.
- An order may have **minimal** and **maximal** elements (maybe multiple)
 - $-x \in A$ is minimal in R if $\forall y \in A \ y \neq x \rightarrow \neg R(y, x)$
 - and maximal if $\forall y \in A \ y \neq x \rightarrow \neg R(x, y)$
 - Ø is minimal in SUBSETS (its unique minimum); universe is maximal (its unique maximum).
 - All primes are minimal in DIVISORS, and there are no maximal elements.

transitive.

Puzzle: coins

- A not-too-far-away country recently got rid of a penny coin, and now everything needs to be rounded to the nearest multiple of 5 cents...
 - Suppose that instead of just dropping the penny, they would introduce a 3 cent coin.
 - Like British three pence.
 - What is the largest amount that cannot be paid by using only existing coins (5, 10, 25) and a 3c coin?