COMP 1002

Logic for Computer Scientists

Lecture 18
Admin stuff

• **Midterm March 2nd.**
 – Closed-book.
 – Covers lectures 1 to 16.
 • Mainly labs 1, 2, 3, 4 and assignments 1 and 2.
 – Study guide posted to help you study
 • **not** to bring to the midterm itself.
 – Sample midterm is posted.
 • I will not be posting solutions, but will be happy to give you feedback on yours.

• Assignment 1 is marked.
 – Read your feedback on D2L
 – Let me know as soon as possible if you have questions about your mark.
 – Assignment 2 hopefully ready by tomorrow lecture.

• Lab 5 moved from the week before the break to this Wednesday.
Puzzle: the barber club

• In a certain barber’s club,
 – Every member has shaved at least one other member
 – No member shaved himself
 – No member has been shaved by more than one member
 – There is a member who has never been shaved.

• **Question:** how many barbers are in this club?

 Infinitely many!

 Barber 0 grows a beard.

 For all \(n \in \mathbb{N} \), barber \(n \) shaves barber \(n+1 \)
Cardinalities of infinite sets

- Two finite sets A and B have the same cardinality if they have the same number of elements.
 - That is, for each element of A there is exactly one matching element of B.
- For infinite A and B, define $|A| = |B|$ iff there exists a bijection between A and B.
 - If there is both a one-to-one function from A to B, and an onto function from A to B.
- A set A is countable iff $|A| = |\mathbb{N}|$.
 - \mathbb{Z} is countable: take $f: \mathbb{Z} \rightarrow \mathbb{N}$, $f(x) = 2x$ if $x \geq 0$, else $f(x) = -(1 + 2x)$
 - Set of all finite strings over $\{0,1\}$, denoted $\{0,1\}^*$, is countable.
 - Empty string, 0, 1, 00, 01,10,11,000,001,...
 - An infinite subset of a countable language is countable. A Cartesian product of countable languages is countable:
 - $\mathbb{N} \times \mathbb{N}$: $(0,0), (0,1), (1,0), (2,0), (1,1), (0,2), (3,0), (2,1), (1,2),...$
 - \mathbb{Q} is countable: $\mathbb{Q} \subset \mathbb{Z} \times \mathbb{Z}$
Diagonalization: \(\mathbb{R} \)

- Is there a bigger infinity?
 - Yes! In particular, \(\mathbb{R} \) is uncountable. Even \([0,1)\) interval of the real line is uncountable!
 - Reals may have infinite strings of digits after the decimal point.
 - Imagine if there were a numbered list of all reals in \([0,1)\)
 - \(a_0, a_1, a_2, a_3, \ldots\)
 - For example:
 - \(a_1 = 0.23145\ldots\)
 - \(a_2 = 0.30000\ldots\)
 - \(\ldots\)

 - Let number \(d\) be:
 - \(d[i] = (a_i [i] + 1) \mod 10\)
 - Here, \([i]\) is \(i^{th}\) digit.
 - This \(d\) is a valid real number!

 - But if number \(d\) were in the list, e.g. \(k^{th}\), a contradiction
 - It would have to differ from itself in \(k^{th}\) place.
Diagonalization: languages

• An **alphabet** is a finite set of symbols.
 – For example, \{0,1\} is the binary alphabet.

• A **language** is a set of finite strings over a given alphabet.
 – For example, \{0,1\}^* is the set of all finite binary strings.
 – PRIMES \(\subseteq\) \{0,1\}^* is all strings coding prime numbers in binary.
 – PYTHON \(\subseteq\) \{0,1\}^* is all strings coding valid Python programs in binary.

• Every language is countable.
 – \{0,1\}^*, PRIMES, PYTHON are countable

• Set of all languages is uncountable.
 – Put “yes” if \(s \in L\), “no” if \(s \notin L\)
 – Let language D be:
 • \(s \in D\) iff \(s \notin L_s\)
 – If D were in the list, e.g. as \(L_k\), a contradiction
 • It would have to differ from itself in \(k^{th}\) place.

• So there is a language for which there is no Python program which would correctly print “yes” on strings in the language, and “no” otherwise.
Halting problem

• A specific example of a problem not solvable by any program: the **Halting problem**, invented by Alan Turing:

 – Input:
 • Prog: A program as piece of code (e.g., in Python):
 • x: Input to that program.

 – Output:
 • “yes” if this Prog(x) stops (that is, program Prog stops on input x).
 • “no” if Prog goes into an infinite loop on input x.

 – Suppose there is a program Halt(Prog, x) which always stops and prints “yes” or “no” correctly.
 • Nothing wrong with giving a piece of code as an input to another program.

 – Then there is a program HaltOnItself(Prog) = Halt(Prog,Prog)

 – And a program Diag(Prog):
 • if Halt(Prog, Prog) says “yes”, go into infinite loop (e.g. add “while 0 <1: “ to Halt’s code).
 • if Halt(Prog, Prog) says “no”, stop.

 – Now, what should Diag(Diag) do?...
 • Paradox! It is like a barber who shaves everybody who does not shave himself.
 • So the program Diag does not exist... Thus the program Halt does not exist!

• So there is no program that would always stop and give the right answer for the Halting problem.