

COMP 1002

Logic for Computer Scientists

Lecture 18

Admin stuff

- Midterm March 2nd.
 - Closed-book.
 - Covers lectures 1 to 16.
 - Mainly labs 1, 2, 3, 4 and assignments 1 and 2.
 - Study guide posted to help you study
 - not to bring to the midterm itself.
 - Sample midterm is posted.
 - I will not be posting solutions, but will be happy to give you feedback on yours.
- Assignment 1 is marked.
 - Read your feedback on D2L
 - Let me know as soon as possible if you have questions about your mark.
 - Assignment 2 hopefully ready by tomorrow lecture.
- Lab 5 moved from the week before the break to this Wednesday.

Puzzle: the barber club

- In a certain barber's club,
 - Every member has shaved at least one other member
 - No member shaved himself
 - No member has been shaved by more than one member
 - There is a member who has never been shaved.

- Question: how many barbers are in this club?
 - Infinitely many!
 - Barber 0 grows a beard.

For all $n \in \mathbb{N}$, barber n shaves barber n+1

Cardinalities of infinite sets

- Two finite sets A and B have the same cardinality if they have the same number of elements
 - That is, for each element of A there is exactly one matching element of B.
- For infinite A and B, define |A|=|B| iff there exists a bijection between A and B.
 - If there is both a one-to-one function from A to B, and an onto function from A to B.
- A set A is countable iff |A| = |N|.
 - \mathbb{Z} is countable: take $f: \mathbb{Z} \to \mathbb{N}$, f(x) = 2x if $x \ge 0$, else f(x) = -(1+2x)
 - Set of all finite strings over $\{0,1\}$, denoted $\{0,1\}^*$, is countable.
 - Empty string, 0, 1, 00, 01,10,11,000,001,...
 - An infinite subset of a countable language is countable. A Cartesian product of countable languages is countable:
 - $\mathbb{N} \times \mathbb{N}$: (0,0), (0,1), (1,0), (2,0), (1,1), (0,2), (3,0), (2,1), (1,2),...
 - $-\mathbb{Q}$ is countable: $\mathbb{Q} \subset \mathbb{Z} \times \mathbb{Z}$

Diagonalization: \mathbb{R}

- Is there a bigger infinity?
 - Yes! In particular, $\mathbb R$ is uncountable. Even [0,1) interval of the real line is uncountable!
 - Reals may have infinite strings of digits after the decimal point.
 - Imagine if there were a numbered list of all reals in [0,1)

$$- a_0, a_1, a_2, a_3, \dots$$

• For example:

$$-a_1 = 0.23145...$$

$$-a_2 = 0.30000...$$

– ...

– Let number d be:

- $d[i]=(a_i[i]+1) \mod 10$
- Here, [i] is i^{th} digit.
- This d is a valid real number!

0.	r[1]	r[2]	r[3]	r[4]	r[5]	 r[k]	
a_0	2	3	1	4	5		
1	3	0	0	0	0		
2	9	9	9	9	9		
k	2	1	3	4	3	 5	
d	3	1	0			 6	

- But if number d were in the list, e.g. k^{th} , a contradiction
 - It would have to differ from itself in k^{th} place.

00

Diagonalization: languages

- An **alphabet** is a finite set of symbols.
 - For example, {0,1} is the binary alphabet.
- A language is a set of finite strings over a given alphabet.
 - For example, $\{0,1\}^*$ is the set of all finite binary strings.
 - PRIMES $\subset \{0,1\}^*$ is all strings coding prime numbers in binary.
 - PYTHON $\subset \{0,1\}^*$ is all strings coding valid Python programs in binary.
- Every language is countable.
 - $-\{0,1\}^*$, PRIMES, PYTHON are countable
- Set of all languages is uncountable.
 - Put "yes" if $s \in L$, "no" if $s \notin L$
 - Let language D be:
 - $s \in D$ iff $s \notin L_s$
 - If D were in the list, e.g. as L_k , a contradiction
 - It would have to differ from itself in kth place.
- So there is a language for which there is no Python program which would correctly print "yes" on strings in the language, and "no" otherwise.

Halting problem

 A specific example of a problem not solvable by any program: the Halting problem, invented by Alan Turing:

- Input:
 - Prog: A program as piece of code (e.g., in Python):
 - x: Input to that program.
- Output:
 - "yes" if this Prog(x) stops (that is, program Prog stops on input x).
 - "no" if Prog goes into an infinite loop on input x.
- Suppose there is a program Halt(Prog, x) which always stops and prints "yes" or "no" correctly.
 - Nothing wrong with giving a piece of code as an input to another program.
- Then there is a program HaltOnItself(Prog) = Halt(Prog,Prog)
- And a program Diag(Prog):
 - if Halt(Prog, Prog) says "yes", go into infinite loop (e.g. add "while 0 <1: " to Halt's code).
 - if Halt(Prog, Prog) says "no", stop.
- Now, what should Diag(Diag) do?...
 - Paradox! It is like a barber who shaves everybody who does not shave himself.
 - So the program Diag does not exist... Thus the program Halt does not exist!
- So there is no program that would always stop and give the right answer for the Halting problem.