

COMP 1002

Logic for Computer Scientists

Lecture 16

Admin stuff

- A2 due Feb 17th.
- Midterm March 2nd.

• Semester break next week!

Puzzle: the barber

 In a certain village, there is a (male) barber who shaves all and only those men of the village who do not shave themselves.

• Question: who shaves the barber?

Operations on sets

- Let A and B be two sets.
 - Such as A={1,2,3} and B={ 2,3,4}
- Intersection $A \cap B = \{ x \mid x \in A \land x \in B \}$
 - The green part of the picture above
 - $A \cap B = \{2,3\}$
- **Union** $A \cup B = \{ x \mid x \in A \lor x \in B \}$
 - The coloured part in the top picture.
 - $A \cup B = \{1, 2, 3, 4\}$
- **Difference** $A B = \{x \mid x \in A \land x \notin B\}$
 - The yellow part in the top picture.
 - $A B = \{1\}$
- Symmetric difference $A \Delta B = (A B) \cup (B A)$
 - The yellow and blue parts of the top picture.
 - $A\Delta B = \{1,4\}$
- **Complement** $\overline{A} = \{x \in U \mid x \notin A\}$
 - The blue part on the bottom Venn diagram
 - If universe U = \mathbb{N} , $\overline{A} = \{x \in \mathbb{N} \mid x \notin \{1,2,3\} \}$

Subsets and operations

- If $A \subseteq B$ then
 - Intersection $A \cap B =$
 - A

- Union $A \cup B =$

• *B*

- Difference A - B =

• Ø

- Difference B A =
 - $\overline{\mathbf{A}} \overline{B}$

Size (cardinality)

 If a set A has n elements, for a natural number n, then A is a finite set and its cardinality is |A|=n.

$$- |\{1,2,3\}| = 3 \\ - |\emptyset| = 0$$

- Sets that are not finite are **infinite**. More on cardinality of infinite sets in a couple of lectures...
 - $-\mathbb{N},\mathbb{Z},\mathbb{Q}$
 - $-\mathbb{R},\mathbb{C}$
 - $\{0,1\}^*$: set of all finite-length binary strings.

Rule of inclusion-exclusion

• Let A and B be two sets. Then

 $|A \cup B| = |A| + |B| - |A \cap B|$

- Proof idea: notice that elements in $|A \cap B|$ are counted twice in |A|+|B|, so need to subtract one copy.
- If A and B are disjoint, then $|A \cup B| = |A| + |B|$
- If there are 112 students in COMP 1001, 70 in COMP 1002, and 12 of them are in both, then the total number of students in 1001 or 1002 is 112+70-12=170.
- For three sets (and generalizes)
- $|A \cup B \cup C| = |A| + |B| + |C|$ - $|A \cap B| - |A \cap C| - |B \cap C|$ + $|A \cap B \cap C|$

Power sets

- A **power set** of a set A, $\mathcal{P}(A)$, is a set of all subsets of A.
 - Think of sets as boxes of elements.
 - A subset of a set A is a box with elements of A (maybe all, maybe none, maybe some).
 - Then $\mathcal{P}(A)$ is a box containing boxes with elements of A.
 - When you open the box $\mathcal{P}(A)$, you don't see chocolates (elements of A), you see boxes.

$$- A=\{1,2\}, \ \mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}\$$

 $- A = \emptyset, \quad \mathcal{P}(A) = \{\emptyset\}.$

- They are not the same! There is nothing in A, and there is one element, an empty box, in $\mathcal{P}(A)$
- If A has n elements, then $\mathcal{P}(A)$ has 2^n elements.

Cartesian products

- **Cartesian product** of A and B is a set of all pairs of elements with the first from A, and the second from B:
 - $A \times B = \{(x, y) | x \in A, y \in B\}$
 - A={1,2,3}, B={a,b}
 - $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}\$
 - A={1,2}, $A \times A = \{(1,1), (1,2), (2,1), (2,2)\}$
- Order of pairs does not matter, order within pairs does: $A \times B \neq B \times A$.
- Number of elements in $A \times B$ is $|A \times B| = |A| \cdot |B|$
- Can define the Cartesian product for any number of sets:
 - $A_1 \times A_2 \times \cdots \times A_k = \{(x_1, x_2, \dots x_k) \mid x_1 \in A_1 \dots x_k \in A_k\}$
 - $A = \{1,2,3\}, B = \{a,b\}, C=\{3,4\}$
 - $A \times B \times C = \{(1, a, 3), (1, a, 4), (1, b, 3), (1, b, 4), (2, a, 3), (2, a, 4), (2, b, 3), (2, b, 4), (2, b$
 - (3, a, 3), (2, a, 4), (3, b, 3), (2, b, 4)

Proofs with sets

- Two ways to describe the purple area
- $\overline{A \cup B}$, $\overline{A} \cap \overline{B}$
 - $-x \in \overline{A \cup B}$ when $x \notin A \cup B$
 - This happens when $x \notin A \land x \notin B$.
 - So $x \in \overline{A} \cap \overline{B}$. Since we picked an arbitrary x, then $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$
 - − Not quite done yet... Now let $x \in \overline{A} \cap \overline{B}$
 - Then $x \in \overline{A} \land x \in \overline{B}$. So $x \notin A \land x \notin B$.
 - $x \notin A \land x \notin B \equiv \neg (x \in A \lor x \in B). \text{ So } x \notin A \cup B. \text{ Thus} \\ x \in A \cup B.$
 - Since x was an arbitrary element of $\overline{A} \cap \overline{B}$, then $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$.

- Therefore
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

Laws of set theory

• Two ways to describe the purple area

 $-\overline{A \cup B} = \overline{A} \cap \overline{B}$

• By similar reasoning,

 $-\overline{A\cap B} = \overline{A}\cup\overline{B}$

• Does this remind you of something?...

$$\neg \neg (p \lor q) \equiv \neg p \land \neg q$$

- DeMorgan's law works in set theory!
- What about other equivalences from logic?

More useful equivalences

- For any formulas A, B, C:
 - $A \lor \neg A \equiv True$
 - $True \lor A \equiv True.$
 - False $\lor A \equiv A$.
 - $\operatorname{AV} A \equiv A \wedge A \equiv A$

 $A \land \neg A \equiv False$

- $True \land A \equiv A$ False $\land A \equiv False$
- Also, like in arithmetic (with V as +, ∧ as *)
 - $-A \lor B \equiv B \lor A$ and $(A \lor B) \lor C \equiv A \lor (B \lor C)$
 - Same holds for \wedge .
 - Also, $(A \lor B) \land C \equiv (A \land C) \lor (B \land C)$
- And unlike arithmetic
 - $-(A \land B) \lor C \equiv (A \lor C) \land (B \lor C)$

Carlo

Propositions vs. sets

Propositional logic	Set theory	
Negation $\neg p$	Complement \overline{A}	
AND $p \land q$	Intersection $A \cap B$	
OR $p \lor q$	Union $A \cup B$	
FALSE	Empty set Ø	
TRUE	Universe U	

More useful equivalences

- For any formulas A, B, C:
 - $A \lor \neg A \equiv True$
 - $True \lor A \equiv True.$
 - False $\lor A \equiv A$.
 - $\operatorname{AV} A \equiv A \wedge A \equiv A$

 $A \land \neg A \equiv False$

- $True \land A \equiv A$ False $\land A \equiv False$
- Also, like in arithmetic (with V as +, ∧ as *)
 - $-A \lor B \equiv B \lor A$ and $(A \lor B) \lor C \equiv A \lor (B \lor C)$
 - Same holds for \wedge .
 - Also, $(A \lor B) \land C \equiv (A \land C) \lor (B \land C)$
- And unlike arithmetic
 - $-(A \land B) \lor C \equiv (A \lor C) \land (B \lor C)$

A-B

Laws of set theory

- For any sets A, B, C:
 - $\mathsf{A} \cup \overline{A} = U \qquad \qquad \mathsf{A} \cap \overline{A} = \emptyset$
 - $U \cup A = U. \qquad \qquad U \cap A = A$
 - $\phi \cup A = A. \qquad \phi \cap A = \phi$
 - $A \cup A = A \cap A = A$
- Also, like in arithmetic (with V as +, ∧ as *)
 - $-A \cup B = B \cup A$ and $(A \cup B) \cup C = A \cup (B \cup C)$
 - Same holds for \cap .
 - Also, $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
- And unlike arithmetic

 $-(A \cap B) \cup C \equiv (A \cup C) \cap (B \cup C)$

Boolean algebra

• The "algebra" of both propositional logic and set theory is called **Boolean algebra** (as opposed to algebra on numbers).

Propositional logic	Set theory	Boolean algebra
Negation $\neg p$	Complement \overline{A}	\overline{a}
AND $p \land q$	Intersection $A \cap B$	$a \cdot b$
OR $p \lor q$	Union $A \cup B$	a + b
FALSE	Empty set Ø	0
TRUE	Universe U	1

Axioms of Boolean algebra

1. a + b = b + a, $a \cdot b = b \cdot a$

- 2. (a+b)+c=a+(b+c) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 3. $a + (b \cdot c) = (a + b) \cdot (a + c)$ $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
- 4. There exist distinct elements 0 and 1 (among underlying set of elements B of the algebra) such that for all $a \in B$,

$$a + 0 = a \qquad \qquad a \cdot 1 = a$$

5. For each $a \in B$ there exists an element $\overline{a} \in B$ such that

$$a + \overline{a} = 1$$
 $a \cdot \overline{a} = 0$

How about DeMorgan, etc? They can be derived from the axioms!

Puzzle: the barber club

- In a certain barber's club,
 - Every member has shaved at least one other member

- No member shaved himself
- No member has been shaved by more than one member
- There is a member who has never been shaved.
- Question: how many barbers are in this club?