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Admin stuff 

• A2  due Feb 17th.  
• Midterm March 2nd. 

 
• Semester break next week!  

 
 

 

 



Puzzle: the barber 

• In a certain village, there is a 
(male)  barber who shaves all and 
only  those men of the village who 
do not shave themselves. 
 

• Question: who shaves the barber?  
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Operations on sets 
• Let A and B be two sets.  

– Such as A={1,2,3} and B={ 2,3,4}  
 

• Intersection 𝐴𝐴 ∩ 𝐵𝐵 =  𝑥𝑥  𝑥𝑥 ∈ 𝐴𝐴 ∧ 𝑥𝑥 ∈ 𝐵𝐵} 
– The green part of the picture above 
– 𝐴𝐴 ∩ 𝐵𝐵 = {2,3} 

 
• Union 𝐴𝐴 ∪ 𝐵𝐵 =  𝑥𝑥 𝑥𝑥 ∈ 𝐴𝐴 ∨ 𝑥𝑥 ∈ 𝐵𝐵}  

– The coloured part in the top picture.  
– 𝐴𝐴 ∪ 𝐵𝐵 = 1,2,3,4  

 
• Difference 𝐴𝐴 − 𝐵𝐵 = 𝑥𝑥  𝑥𝑥 ∈ 𝐴𝐴 ∧ 𝑥𝑥 ∉ 𝐵𝐵}  

– The yellow part in the top picture.  
– A − 𝐵𝐵 = 1  

 
• Symmetric difference 𝐴𝐴 Δ 𝐵𝐵 = 𝐴𝐴 − 𝐵𝐵 ∪ (𝐵𝐵 − 𝐴𝐴) 

– The yellow and blue parts of the top picture. 
– AΔ𝐵𝐵 = 1,4  

 
• Complement   𝐴𝐴  = 𝑥𝑥 ∈ 𝑈𝑈  𝑥𝑥 ∉ 𝐴𝐴}  

– The blue part on the bottom Venn diagram 
– If universe U = ℕ, 𝐴𝐴  = 𝑥𝑥 ∈ ℕ 𝑥𝑥 ∉ 1,2,3   }     
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Subsets and operations 

• If 𝐴𝐴 ⊆ 𝐵𝐵 then   
– Intersection 𝐴𝐴 ∩ 𝐵𝐵 =  

• A  
 

– Union 𝐴𝐴 ∪ 𝐵𝐵 = 
• 𝐵𝐵 

  
– Difference 𝐴𝐴 − 𝐵𝐵 = 

• ∅ 
 

– Difference B – A =  
• A  −  𝐵𝐵 
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Size (cardinality) 
• If a set A has n elements, for a natural number n, then 

A is a finite set and its cardinality   is |A|=n.  
– 1,2,3 = 3 
– |∅| = 0  

 
• Sets that are not finite are infinite. More on cardinality 

of infinite sets in a couple of lectures… 
– ℕ,ℤ,ℚ  
– ℝ,ℂ 
– 0,1 ∗:  set of all finite-length binary strings.  

 
 

 



Rule of inclusion-exclusion 
• Let A and B be two sets.  Then 

𝐴𝐴 ∪ 𝐵𝐵 = 𝐴𝐴 + 𝐵𝐵 − 𝐴𝐴 ∩ 𝐵𝐵  
– Proof idea: notice that elements in 𝐴𝐴 ∩ 𝐵𝐵  are counted twice in 

|A|+|B|, so need to subtract one copy.  
– If A and B are disjoint, then 𝐴𝐴 ∪ 𝐵𝐵 = 𝐴𝐴 + 𝐵𝐵  
– If there are 112 students in COMP 1001, 70 in COMP 1002, and 

12 of them are in both, then the total number of students in 
1001 or 1002 is   112+70-12=170.  

  
• For three sets (and generalizes)   
•  𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶 =  𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶  
                                − 𝐴𝐴 ∩ 𝐵𝐵 − 𝐴𝐴 ∩ 𝐶𝐶 − 𝐵𝐵 ∩ 𝐶𝐶  

+ 𝐴𝐴 ∩ 𝐵𝐵 ∩ 𝐶𝐶  
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Power sets 
• A power set of a set A, P 𝐴𝐴 , is a set of all 

subsets of A.   
– Think of sets as boxes of elements.  
– A subset of a set A is a box with elements of A 

(maybe all, maybe none, maybe some).  
– Then  P 𝐴𝐴  is a box containing boxes with 

elements of A. 
– When you open the box P 𝐴𝐴 , you don’t see 

chocolates (elements of A), you see boxes.  
 

– A={1,2},   P 𝐴𝐴 = ∅, 1 , 2 , 1,2  
 

– 𝐴𝐴 = ∅,    P 𝐴𝐴 = ∅ .   
• They are not the same! There is nothing in A, and there 

is one element, an empty box, in P 𝐴𝐴  
 

• If A has n elements, then  P 𝐴𝐴  has 2𝑛𝑛 elements.  

 A 

Subsets of A:  

  

  

 
 
 
 
 
 
 
 
 
 
 

Power set  P 𝐴𝐴  



Cartesian products 
• Cartesian product of  A and B is a set of all pairs of elements 

with the first from A, and the second from B:    
– A x B = 𝑥𝑥, 𝑦𝑦 𝑥𝑥 ∈ 𝐴𝐴, 𝑦𝑦 ∈ 𝐵𝐵}  

 
– A={1,2,3},  B={a,b} 
– 𝐴𝐴 × 𝐵𝐵 = { 1,𝑎𝑎 , 1, 𝑏𝑏 , 2,𝑎𝑎 , 2, 𝑏𝑏 , 3,𝑎𝑎 , 3, 𝑏𝑏 }  
– A={1,2},  𝐴𝐴 × 𝐴𝐴 = { 1,1. , 1,2 , 2,1 , 2,2 } 

 
• Order of pairs does not matter, order within pairs does: 

𝐴𝐴 × 𝐵𝐵 ≠ 𝐵𝐵 × 𝐴𝐴 .  
 

• Number of elements in 𝐴𝐴 × 𝐵𝐵 is |𝐴𝐴 × 𝐵𝐵| = 𝐴𝐴 ⋅ |𝐵𝐵|  
 

• Can define the Cartesian product for any number of sets:   
– 𝐴𝐴1 × 𝐴𝐴2 × ⋯× 𝐴𝐴𝑘𝑘 = 𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑘𝑘)  𝑥𝑥1 ∈ 𝐴𝐴1 … 𝑥𝑥𝑘𝑘 ∈ 𝐴𝐴𝑘𝑘  
– 𝐴𝐴 = 1,2,3 , 𝐵𝐵 ={a,b}, C={3,4} 
– 𝐴𝐴 × 𝐵𝐵 × 𝐶𝐶 = { 1,𝑎𝑎, 3 , 1,𝑎𝑎, 4 , 1, 𝑏𝑏, 3 , 1, 𝑏𝑏, 4 , 
                                2,𝑎𝑎, 3 , 2,𝑎𝑎, 4 , 2, 𝑏𝑏, 3 , 2, 𝑏𝑏, 4 , 
                                3,𝑎𝑎, 3 , 3,𝑎𝑎, 4 , 3, 𝑏𝑏, 3 , 3, 𝑏𝑏, 4 } 
 

 
 
 

B 
 
 
 

A 
 
 
 

A x B  
 
 
 
 
 
 
 
 

a b 

1 (1,a) (1,b) 

2 (2,a) (2,b) 

3 (3,a) (3,b) 



Proofs with sets 
• Two ways to describe the purple area 
• 𝐴𝐴 ∪ 𝐵𝐵,      𝐴𝐴 ∩ 𝐵𝐵   

– 𝑥𝑥 ∈   𝐴𝐴 ∪ 𝐵𝐵   when 𝑥𝑥 ∉   𝐴𝐴 ∪ 𝐵𝐵  
– This happens when  𝑥𝑥 ∉ 𝐴𝐴 ∧ 𝑥𝑥 ∉ 𝐵𝐵.    
– So 𝑥𝑥 ∈  𝐴𝐴 ∩ 𝐵𝐵.  Since we picked an arbitrary x, then 𝐴𝐴 ∪ 𝐵𝐵 ⊆ 𝐴𝐴 ∩ 𝐵𝐵  

 
– Not quite done yet…  Now let 𝑥𝑥 ∈  𝐴𝐴 ∩ 𝐵𝐵 
– Then 𝑥𝑥 ∈ 𝐴𝐴 ∧ 𝑥𝑥 ∈ 𝐵𝐵.  So 𝑥𝑥 ∉ 𝐴𝐴 ∧  𝑥𝑥 ∉ 𝐵𝐵.  
– 𝑥𝑥 ∉ 𝐴𝐴 ∧  𝑥𝑥 ∉ 𝐵𝐵 ≡   ¬ 𝑥𝑥 ∈ 𝐴𝐴 ∨ 𝑥𝑥 ∈ 𝐵𝐵 .  So 𝑥𝑥 ∉ 𝐴𝐴 ∪ 𝐵𝐵. Thus 
𝑥𝑥 ∈   𝐴𝐴 ∪ 𝐵𝐵.    

– Since x was an arbitrary element of 𝐴𝐴 ∩ 𝐵𝐵,  then  𝐴𝐴 ∩ 𝐵𝐵 ⊆  𝐴𝐴 ∪ 𝐵𝐵.   
 

– Therefore 𝐴𝐴 ∪ 𝐵𝐵 =   𝐴𝐴 ∩ 𝐵𝐵   
 
 

 
 

 
 
 

 

A B 
U          

 
 
 



Laws of set theory 

• Two ways to describe the purple area 
– 𝐴𝐴 ∪ 𝐵𝐵 = 𝐴𝐴 ∩ 𝐵𝐵  

• By similar reasoning,  
– 𝐴𝐴 ∩ 𝐵𝐵 = 𝐴𝐴 ∪ 𝐵𝐵  

 
• Does this remind you of something?...  

– ¬ 𝑝𝑝 ∨ q ≡ ¬𝑝𝑝 ∧ ¬ 𝑞𝑞  
– DeMorgan’s law works in set theory!  
– What about other equivalences from logic?  
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More useful equivalences  
• For any formulas A, B, C:  

– A ∨ ¬𝐴𝐴 ≡ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇                      𝐴𝐴 ∧ ¬𝐴𝐴 ≡ 𝐹𝐹𝑎𝑎𝐹𝐹𝐹𝐹𝑇𝑇  
– 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ∨ 𝐴𝐴 ≡ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇.                𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ∧ 𝐴𝐴 ≡ 𝐴𝐴 
– 𝐹𝐹𝑎𝑎𝐹𝐹𝐹𝐹𝑇𝑇 ∨ 𝐴𝐴 ≡ 𝐴𝐴.                     𝐹𝐹𝑎𝑎𝐹𝐹𝐹𝐹𝑇𝑇 ∧ 𝐴𝐴 ≡ 𝐹𝐹𝑎𝑎𝐹𝐹𝐹𝐹𝑇𝑇  
– A∨ 𝐴𝐴 ≡ 𝐴𝐴 ∧ 𝐴𝐴 ≡ 𝐴𝐴 

• Also, like in arithmetic (with ∨ as +, ∧ as *) 
– 𝐴𝐴 ∨ 𝐵𝐵 ≡ 𝐵𝐵 ∨ 𝐴𝐴     𝑎𝑎𝑎𝑎𝑎𝑎  𝐴𝐴 ∨ 𝐵𝐵 ∨ 𝐶𝐶 ≡ 𝐴𝐴 ∨ 𝐵𝐵 ∨ 𝐶𝐶   
– Same holds for ∧.   
– Also,  𝐴𝐴 ∨ 𝐵𝐵 ∧ 𝐶𝐶 ≡ 𝐴𝐴 ∧ 𝐶𝐶 ∨ 𝐵𝐵 ∧ 𝐶𝐶  

• And unlike arithmetic 
– 𝐴𝐴 ∧ 𝐵𝐵 ∨ 𝐶𝐶 ≡   𝐴𝐴 ∨ 𝐶𝐶 ∧ (𝐵𝐵 ∨ 𝐶𝐶)  
 

 



Propositions vs. sets 
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Propositional  logic Set theory 

Negation  ¬ 𝑝𝑝 Complement    𝐴𝐴 

𝐴𝐴𝐴𝐴𝐴𝐴  𝑝𝑝 ∧ 𝑞𝑞  Intersection  𝐴𝐴 ∩  𝐵𝐵 

OR    𝑝𝑝 ∨ 𝑞𝑞  Union  𝐴𝐴 ∪ 𝐵𝐵  

FALSE Empty set   ∅ 

TRUE Universe  U 



More useful equivalences  
• For any formulas A, B, C:  

– A ∨ ¬𝐴𝐴 ≡ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇                      𝐴𝐴 ∧ ¬𝐴𝐴 ≡ 𝐹𝐹𝑎𝑎𝐹𝐹𝐹𝐹𝑇𝑇  
– 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ∨ 𝐴𝐴 ≡ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇.                𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ∧ 𝐴𝐴 ≡ 𝐴𝐴 
– 𝐹𝐹𝑎𝑎𝐹𝐹𝐹𝐹𝑇𝑇 ∨ 𝐴𝐴 ≡ 𝐴𝐴.                     𝐹𝐹𝑎𝑎𝐹𝐹𝐹𝐹𝑇𝑇 ∧ 𝐴𝐴 ≡ 𝐹𝐹𝑎𝑎𝐹𝐹𝐹𝐹𝑇𝑇  
– A∨ 𝐴𝐴 ≡ 𝐴𝐴 ∧ 𝐴𝐴 ≡ 𝐴𝐴 

• Also, like in arithmetic (with ∨ as +, ∧ as *) 
– 𝐴𝐴 ∨ 𝐵𝐵 ≡ 𝐵𝐵 ∨ 𝐴𝐴     𝑎𝑎𝑎𝑎𝑎𝑎  𝐴𝐴 ∨ 𝐵𝐵 ∨ 𝐶𝐶 ≡ 𝐴𝐴 ∨ 𝐵𝐵 ∨ 𝐶𝐶   
– Same holds for ∧.   
– Also,  𝐴𝐴 ∨ 𝐵𝐵 ∧ 𝐶𝐶 ≡ 𝐴𝐴 ∧ 𝐶𝐶 ∨ 𝐵𝐵 ∧ 𝐶𝐶  

• And unlike arithmetic 
– 𝐴𝐴 ∧ 𝐵𝐵 ∨ 𝐶𝐶 ≡   𝐴𝐴 ∨ 𝐶𝐶 ∧ (𝐵𝐵 ∨ 𝐶𝐶)  
 

 



Laws of set theory  
• For any sets A, B, C:  

– A ∪ 𝐴𝐴  = 𝑈𝑈                             A ∩ 𝐴𝐴  = ∅ 
– 𝑈𝑈 ∪ 𝐴𝐴 = 𝑈𝑈.                            𝑈𝑈 ∩ 𝐴𝐴 =  𝐴𝐴 
– ∅ ∪ 𝐴𝐴 = 𝐴𝐴.                             ∅ ∩  𝐴𝐴 = ∅  
– A ∪ 𝐴𝐴 =  𝐴𝐴 ∩ 𝐴𝐴 = 𝐴𝐴 

• Also, like in arithmetic (with ∨ as +, ∧ as *) 
– 𝐴𝐴 ∪ 𝐵𝐵 = 𝐵𝐵 ∪ 𝐴𝐴     𝑎𝑎𝑎𝑎𝑎𝑎  𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶 = 𝐴𝐴 ∪ 𝐵𝐵 ∪ 𝐶𝐶   
– Same holds for ∩.   
– Also,  𝐴𝐴 ∪ 𝐵𝐵 ∩ 𝐶𝐶 = 𝐴𝐴 ∩ 𝐶𝐶 ∪ 𝐵𝐵 ∩ 𝐶𝐶  

• And unlike arithmetic 
– 𝐴𝐴 ∩ 𝐵𝐵 ∪ 𝐶𝐶 ≡   𝐴𝐴 ∪ 𝐶𝐶 ∩ (𝐵𝐵 ∪ 𝐶𝐶)  
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 A-B   

𝐴𝐴 ∩ 𝐵𝐵  



Boolean algebra  

• The “algebra” of both propositional logic and set 
theory is called   Boolean algebra (as opposed to 
algebra on numbers).    
 
 

 

Propositional  logic Set theory Boolean algebra 

Negation  ¬ 𝑝𝑝 Complement    𝐴𝐴  𝑎𝑎 

𝐴𝐴𝐴𝐴𝐴𝐴  𝑝𝑝 ∧ 𝑞𝑞  Intersection  𝐴𝐴 ∩  𝐵𝐵 𝑎𝑎 ⋅ 𝑏𝑏 

OR    𝑝𝑝 ∨ 𝑞𝑞  Union  𝐴𝐴 ∪ 𝐵𝐵  𝑎𝑎 + 𝑏𝑏  

FALSE Empty set   ∅ 0 

TRUE Universe  U 1 



Axioms of Boolean algebra 

1. 𝑎𝑎 + 𝑏𝑏 = 𝑏𝑏 + 𝑎𝑎,            𝑎𝑎 ⋅ 𝑏𝑏 = 𝑏𝑏 ⋅ 𝑎𝑎 
2. (a+b)+c=a+(b+c)          a ⋅ 𝑏𝑏 ⋅ 𝑐𝑐 = 𝑎𝑎 ⋅ 𝑏𝑏 ⋅ 𝑐𝑐  
3. 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑐𝑐 = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑎𝑎 + 𝑐𝑐                                          

𝑎𝑎 ⋅ 𝑏𝑏 + 𝑐𝑐 = 𝑎𝑎 ⋅ 𝑏𝑏 + (𝑎𝑎 ⋅ 𝑐𝑐 ) 
4. There exist distinct elements 0 and 1 (among 

underlying set of elements B of the algebra) such that 
for all 𝑎𝑎 ∈ 𝐵𝐵,   

𝑎𝑎 + 0 = 𝑎𝑎                       𝑎𝑎 ⋅ 1 = 𝑎𝑎  
5. For each 𝑎𝑎 ∈ 𝐵𝐵 there exists an element 𝑎𝑎 ∈ 𝐵𝐵 such that  
                         𝑎𝑎 + 𝑎𝑎 = 1                  𝑎𝑎 ⋅ 𝑎𝑎 = 0   
 
How about DeMorgan, etc?  They can be derived from the axioms! 



Puzzle: the barber club 

• In a certain barber’s club, 
– Every member has shaved at least one other 

member 
– No member shaved himself 
– No member has been shaved by more than one 

member 
– There is a member who has never been shaved.  

 
• Question: how many barbers are in this 

club?  
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