

COMP 1002

Intro to Logic for Computer Scientists

Lecture 14

Admin stuff

- Assignments schedule? Split a2 and a3 in two (A2,3,4,5), 5% each. A2 due Feb 17th.
- Midterm date? March 2nd.

• No office hour on Feb 9th

Types of proofs

- Direct proof of $\forall x F(x)$
 - Show that F(x) holds for arbitrary x, then use universal generalization.
 - Often, F(x) is of the form $G(x) \rightarrow H(x)$
 - Example: A sum of two even numbers is even.
 - Example: Difference of numbers congruent mod d.
- Proof by cases
 - If can write $\forall x F(x)$ as $\forall x(G_1(x) \lor G_2(x) \lor \cdots \lor G_k(x)) \to H(x)$, prove $(G_1(x) \to H(x)) \land (G_2(x) \to H(x)) \land \cdots \land (G_k(x) \to H(x))$
 - Example: triangle inequality $(|x + y| \le |x| + |y|)$
- Proof by contraposition
 - To prove $\forall x \ G(x) \rightarrow H(x)$, prove $\forall x \neg H(x) \rightarrow \neg G(x)$
 - Example: If square of an integer is even, then this integer is even.
- Proof by contradiction
 - To prove $\forall x F(x)$, prove $\forall x \neg F(x) \rightarrow FALSE$
 - Example: $\sqrt{2}$ is not a rational number.
 - Example: There are infinitely many primes.

Direct proof

- Direct proof of ∀x ∈ S F(x): show directly that F(x) holds for arbitrary x, then use universal generalization.
 - Universal instantiation: "let n be an arbitrary element of the domain S of $\forall x$ "
 - Show F(n) from axioms, definitions, previous theorems...
 - When F(x) is of the form G(x) → H(x), then assume G(n) is true, and from that (and axioms, etc) derive H(n)
 - That proves $G(n) \rightarrow H(n)$
 - Now use universal generalization to conclude that $\forall x F(x)$ is true.

Direct proof

• *Definition* (of even integers):

- An integer n is **even** iff $\exists k \in \mathbb{Z}, n = 2 \cdot k$.

• *Theorem*: Sum of two even integers is even.

 $- \forall x, y \in \mathbb{Z} \ Even(x) \land Even(y) \rightarrow Even(x + y).$

• *Proof*:

- Suppose m and n are arbitrary even integers.
 - Universal instantiation.
- Then $\exists k \in \mathbb{Z}, n = 2k$ and $\exists l \in \mathbb{Z}, m = 2l$.
 - By definition: note different variables.
- -m + n = 2k + 2l = 2(k + l)
 - By substitution and axioms of theory of integers (algebra).
- -m + n = 2(k + l), so m + n is even
 - By definition (other direction of iff).
- Since m and n were arbitrary, therefore, we have shown what we needed: $\forall x, y \in \mathbb{Z}$ $Even(x) \land Even(y) \rightarrow Even(x + y)$.
 - By universal generalization.

Modular arithmetic

- Quotient-remainder theorem: for any integer n and a positive integer d, there exist unique integers q (quotient) and r (reminder) such that: n = dq + r and 0 ≤ r < q

 16 = 3*5+1, 11 = 2*4+3...
- $n \equiv m \pmod{d}$, pronounced "*n* is congruent to *m* mod *d*", means that n and m have the same remainder when divided by d. That is, $n = dq_1 + r$ and $m = dq_2 + r$, for the same r.
 - In some programming languages, there is an operator mod, so you might see "n mod d", which would return r.
 - In Python, it is n % d.
 - $n \equiv m \pmod{d}$ and $m = n \mod{d}$ are not the same:
 - $10 \equiv 16 \pmod{3}$, but $10 \mod 3 = 1$
 - Operator div, "n div d" is sometimes used to compute q.
 - In Python, integer division (or //) does it.

Modular arithmetic in CS

- Example: day of the week.
 - Feb 1st and Feb 15th are both on Wednesday: $1 \equiv 15 \pmod{7}$
- Hash functions: distribute random data evenly among d memory locations
 - Often take h(k) = k mod p for some prime p. If $k \equiv \ell \pmod{p}$, get a collision.
- Cryptography:
 - Parity checks in codes, ISBNs, etc.
 - Public key crypto, RSA....

Direct proof example

• Theorem: for all integers n,m and d, where d > 0, if $n \equiv m \pmod{d}$ then there exists an integer k such that n = m + kd

 $- \ \forall x, y, z \ (z > 0 \land x \equiv y \ (mod \ z)) \rightarrow \exists u \ x = y + uz$

- Proof:
 - Let n, m, d be arbitrary integers such that d > 0 and $n \equiv m \pmod{d}$
 - Universal instantiation and assuming the premise
 - Then there are integers q_1, q_2, r with $0 \le r < d$ such that $n = dq_1 + r$ and $m = dq_2 + r$.
 - By the quotient-remainder theorem and definition of congruence.
 - Now, $n-m = (dq_1 + r) (dq_2 + r) = d(q_1 q_2)$
 - Substitution and algebra.
 - Set $k = q_1 q_2$. For this k, n = m + kd. Therefore, $\exists u \ n = m + ud$
 - By existential generalization
 - Since n, m, d were arbitrary integers with d > 0 and $n \equiv m \pmod{d}$, $\forall x, y, z \ (z > 0 \land x \equiv y \pmod{z}) \rightarrow \exists u \ x = y + uz$
 - By universal generalization.

Proof by cases

- Use the tautology $(p_1 \lor p_2) \land (p_1 \to q) \land (p_2 \to q) \to q$
 - Or its variant with cases $p_1 \dots p_k$
- If $\forall x F(x)$ is $\forall x(G_1(x) \lor G_2(x)) \to H(x)$,
- prove $(G_1(x) \to H(x)) \land (G_2(x) \to H(x)).$
- Proof:
 - Universal instantiation: "let n be an arbitrary element of the domain S of $\forall x$ "
 - Case 1: $G_1(n) \rightarrow H(n)$
 - Case 2: $G_2(n) \rightarrow H(n)$
 - (if more cases than 2)
 - Case k: $G_k(n) \rightarrow H(n)$
 - Therefore, $G_1(n) \vee G_2(n)) \rightarrow H(n)$,
 - Now use universal generalization to conclude that $\forall x F(x)$ is true.

Proof by cases.

- *Definition* (of odd integers):
 - An integer n is **odd** iff $\exists k \in \mathbb{Z}, n = 2 \cdot k + 1$.
- *Theorem*: Sum of an integer with a consecutive integer is odd.
 - $\quad \forall x \in \mathbb{Z} \ Odd(x + (x + 1)).$
- Proof:
 - Suppose n is an arbitrary integer.
 - Case 1: n is even.
 - So n=2k for some k (by definition).
 - Its consecutive integer is n+1 = 2k+1. Their sum is (n+(n+1))= 2k + (2k+1) = 4k+1. (axioms).
 - Let l = 2k. Then 4k + 1 = 2l + 1 is an odd number (by definition). So in this case, n+(n+1) is odd.
 - Case 2: n is odd.
 - So n=2k+1 for some k (by definition).
 - Its consecutive integer is n+1 = 2k+2. Their sum is (n+(n+1))= (2k+1) + (2k+2) = 2(2k+1)+1. (axioms).
 - Let l = 2k + 1. Then n+(n+1) = 2(2k+1)+1 = 2l + 1, which is an odd number (by definition). So in this case, n+(n+1) is also odd.
 - Since in both cases n+(n+1) is odd, it is odd without additional assumptions. Therefore, by universal generalization, get $\forall x \in \mathbb{Z} \ Odd(x + (x + 1))$.

Proof by cases

- Definition: an absolute value of a real number r is a non-negative real number |r| such that if |r| = r if $r \ge 0$, and |r| = -r if r < 0
 - Claim 1: $\forall x \in \mathbb{R}, |-x| = |x|$
 - Claim 2: $\forall x \in \mathbb{R}, -|x| \le x \le |x|$
- *Theorem*: for any two reals, sum of their absolute values is at least the absolute value of their sum.
 - $\quad \forall x, y \in \mathbb{R} \ |x + y| \le |x| + |y|$
- Proof:
 - Let r and s be arbitrary reals. (universal instantiation)
 - Case 1: Let $r + s \ge 0$.
 - Then |r + s| = r + s (definition of ||)
 - Since $r \leq |r|$ and $s \leq |s|$ (claim 2), $r+s \leq |r| + |s|$ (axioms),
 - so $|r + s| = r + s \le |r| + |s|$, which is what we need.
 - Case 2: Let r + s < 0.
 - Then |r + s| = -(r + s) = (-r) + (-s) (definition of ||)
 - Since $-r \leq |-r| = |r|$ and $-s \leq |-s| \leq |s|$ (claims 1 and 2),
 - $|r+s| = (-r) + (-s) \le |r| + |s|$ (axioms), which is what we need.
 - Since in both cases $|r+s| \le |r| + |s|$, and there are no more cases, $|r+s| \le |r| + |s|$ without additional assumptions. By universal generalization, can now get $\forall x, y \in \mathbb{R}$ $|x + y| \le |x| + |y|$. □ (Done).

Proof by contraposition

- To prove $\forall x \ G(x) \rightarrow H(x)$, prove its contrapositive $\forall x \neg H(x) \rightarrow \neg G(x)$
 - Universal instantiation: "let n be an arbitrary element of the domain S of ∀x "
 - Suppose that $\neg H(n)$ is true.
 - Derive that $\neg G(n)$ is true.
 - Conclude that $\neg H(n) \rightarrow \neg G(n)$ is true.
 - Now use universal generalization to conclude that
 ∀x F(x) is true.

Pigeonhole Principle

- Suppose that nobody in our class carries more than 10 pens.
- There are 70 students in our class.
- Prove that there are at least 2 students in our class who carry the same number of pens.
 - In fact, there are at least 7 who do.
- The Pigeonhole Principle:
 - If there are n pigeons
 - And n-1 pigeonholes
 - Then if every pigeon is in a pigeonhole
 - At least two pigeons sit in the same hole

Proof by contraposition.

- Theorem (PigeonHolePrinciple): For any n, if there are n+1 pigeons and n holes, then if every pigeon sits in some hole, then there is a hole with at least two pigeons.
 - $\begin{array}{l} \ \forall x \in \mathbb{N} \ \left(\forall \ y \leq x \ \exists \ z < x \ Sits(y, z) \right) \\ \exists \ u \leq x \ \exists \ v \leq x \ \exists w < x \ \left(u \neq v \land Sits(u, w) \land Sits(v, w) \right) \end{array} \end{array}$
- Proof:
 - Suppose n is an arbitrary integer.
 - We show the contrapositive: if every hole has at most one pigeon, then some pigeon is not sitting in any hole.
 - If every hole has at most one pigeon, then there are at $\leq 1^*n=n$ pigeons sitting in holes.
 - Then there are $\ge (n + 1) n = 1$ pigeons that are not sitting in a hole, proving the contrapositive.
 - Therefore, if every pigeon sits in a hole, and there are more than n pigeons, then two pigeons sit in the same hole.
 - By universal generalization, done.

Proof by contraposition.

- *Theorem*: If a square of an integer is even, that integer is even.
 - $\forall x \in \mathbb{Z} \ Even(x^2) \rightarrow Even(x).$

• Proof:

- We will show a contrapositive: $\forall x \in \mathbb{Z} \neg Even(x) \rightarrow \neg Even(x^2)$. That is, square of an odd integer is odd.
- Let n be an arbitrary odd integer. By definition, n = 2k + 1 for some integer k.
- Then $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$,
- So $n^2 = 2m + 1$ for m= $2k^2 + 2k$, thus n^2 is odd by definition.
- By universal generalization, get $\forall x \in \mathbb{Z} \neg Even(x) \rightarrow \neg Even(x^2)$. Since it is a contrapositive of the original statement, done.

Proof by contradiction

- To prove $\forall x \ F(x)$, prove $\forall x \neg F(x) \rightarrow FALSE$
 - Universal instantiation: "let n be an arbitrary element of the domain S of ∀x "
 - Suppose that $\neg F(n)$ is true.
 - Derive a contradiction.
 - Conclude that F(n) is true.
 - By universal generalization, $\forall x F(x)$ is true.

Proof by contradiction

- *Definition* (of rational and irrational numbers):
 - A real number r is **rational** iff $\exists m, n \in \mathbb{Z}, n \neq 0 \land \gcd(m, n) = 1 \land r = \frac{m}{n}$.
 - Reminder: greatest common divisor gcd(m,n) is the largest integer which divides both m and n. When d=1, m and n are relatively prime.
 - A real number which is not rational is called **irrational**.
- *Theorem*: Square root of 2 is irrational.
- Proof:
 - Suppose, for the sake of contradiction, that $\sqrt{2}$ is rational. Then there exist relatively prime m, $n \in \mathbb{Z}$, $n \neq 0$ such that $\sqrt{2} = \frac{m}{n}$.
 - By algebra, squaring both sides we get $2 = \frac{m^2}{n^2}$.
 - Thus m^2 is even, and by the theorem we just proved, then m is even. So m = 2k for some k.
 - $-2n^2 = 4k^2$, so $n^2 = 2k^2$, and by the same argument n is even.
 - This contradicts our assumption that m and n are relatively prime. Therefore, such m and n cannot exist, and so $\sqrt{2}$ is not rational.

Puzzle: Caesar cipher

- The Roman dictator Julius Caesar encrypted his personal correspondence using the following code.
 - Number letters of the alphabet: A=0, B=1,... Z=25.
 - To encode a message, replace every letter by a letter three positions before that (wrapping).
 - A letter numbered x by a letter numbered x-3 mod 26.
 - For example, F would be replaced by C, and A by X
- Suppose he sent the following message.
 QOBXPROB FK QEB ZXSB
- What does it say?

