COMP 1002

Intro to Logic for Computer Scientists

Lecture 13
Admin stuff

• Assignments schedule? Split a2 and a3 in two (A2,3,4,5), 5% each. A2 due Feb 17th.

• Midterm date? March 2nd.

• No office hour on Feb 9th
Puzzle 11

• Let

\[S = \{ x \in \mathbb{N} \mid x \text{ is even} \} \cap \{ x \in \mathbb{N} \mid x \text{ is odd} \} \]

• Prove or disprove:

\[\forall x \in S, \quad x \text{ does not divide } x^2 \]
Puzzle 11

- Let $S = \{ x \in \mathbb{N} \mid x \text{ is even} \} \cap \{ x \in \mathbb{N} \mid x \text{ is odd} \}$
 - $S = \emptyset$

- Prove or disprove:
 $\forall x \in S, \quad x \text{ does not divide } x^2$
 - Let $P(x) = "x \text{ does not divide } x^2"$
 - To disprove, can give a counterexample
 - Find an element in S such that $P(x)$ is true...
 - But there is no such element in S, because there are no elements in S at all!
 - To prove, enough to check that it holds for all elements of S.
 - There is none, so it does hold for every element in S.
 - Another way: Since S is defined as a subset of natural numbers, can read $\forall x \in S \ P(x)$ as $\forall x \in \mathbb{N} \ (x \in S \rightarrow P(x))$.
 - Since "$x \in S$" is always false, $x \in S \rightarrow P(x)$ is true for every $x \in \mathbb{N}$
 - Call a statement $\forall x \in \emptyset \ P(x)$ **vacuously true.**
Universal Modus Ponens

• All men are mortal
• Socrates is a man
• Therefore, Socrates is mortal

• All cats like fish
• Molly likes fish
• Therefore, Molly is a cat
Universal Modus Ponens

- $\forall x, P(x) \rightarrow Q(x)$
- $P(a)$
- --------------------
- $Q(a)$

- All men are mortal ($\forall x, \text{Man}(x) \rightarrow \text{Mortal}(x)$)
- Socrates is a man ($\text{Man}(\text{Socrates})$)
- Therefore, Socrates is mortal ($\text{Mortal}(\text{Socrates})$)

- All numbers are either odd or even
- 2 is a number
- Therefore, 2 is either odd or even.

- All trees drop leaves
- Pine does not drop leaves
- Therefore, pine is not a tree
Universal Modus Ponens

• All men are mortal
• Socrates is a man
• Therefore, Socrates is mortal

• All cats like fish
• Molly likes fish
• Therefore, Molly is a cat
Instantiation/generalization

• In general, if $\forall x \in S \ F(x)$ is true for some formula $F(x)$, if you take any specific element $a \in S$, then $F(a)$ must be true.
 – This is called the **universal instantiation** rule.
 • $\forall x \in \mathbb{N} \ (x > -1)$
 • $\therefore \ 5 > -1$

• If you prove $F(a)$ without any assumptions about a other than $a \in S$, then $\forall x \in S, F(x)$
 – This is called **universal generalization**.
Instantiation/generalization

• If you can find an element \(a \in S \) such that \(F(a) \), then \(\exists x \in S, F(x) \)
 – This is called existential generalization.

• Alternatively, if \(\exists x \in S \ F(x) \) is true, then you can give that element of \(S \) for which \(F(x) \) is true a name, as long as that name has not been used elsewhere.
 – This is called the existential instantiation rule.

 • \(\exists x \in \mathbb{N} \ (x - 5 = 0) \)
 • \(\therefore k = 0 + 5 \)
Existential instantiation

• If $\exists x \in S \ F(x)$ is true, then you can give that element of S for which $F(x)$ is true a name, as long as that name has not been used elsewhere.

 — “Let n be an even number. Then $n=2k$ for some k”.

 • $\forall x \in \mathbb{N} \ Even(x) \rightarrow \exists y \in \mathbb{N} \ (x = 2 \times y)$

 — Important to have a new name!

 • “Let n and m be two even numbers. Then $n=2k$ and $m=2k$” is wrong!

 • $\forall x_1, x_2 \in \mathbb{N} \ Even(x_1) \land Even(x_2) \rightarrow$

 $\exists y_1, y_2 \in \mathbb{N} \ (x_1 = 2 \times y_1) \land (x_2 = 2 \times y_2)$

 • “Let n and m be two even numbers. Then $n=2k$ and $m=2\ell$”
Other inference rules

• Combining universal instantiation with tautologies, get other types of arguments:

\[\begin{align*}
& \quad p \to q \quad \cdot \quad \forall x \ P(x) \to Q(x) \quad \text{For any } x, \text{ if } x > 3, \text{ then } x > 2 \\
& q \to r \quad \cdot \quad \forall x \ Q(x) \to R(x) \quad \text{For any } x, \text{ if } x > 2, \text{ then } x \neq 1 \\
\hline
\therefore \quad \forall x \ P(x) \to R(x) \quad \text{For any } x, \text{ if } x > 3, \text{ then } x \neq 1
\end{align*} \]

• (This particular rule is called “transitivity”)
Types of proofs

- Direct proof of $\forall x \ F(x)$
 - Show that $F(x)$ holds for arbitrary x, then use universal generalization.
 - Often, $F(x)$ is of the form $G(x) \rightarrow H(x)$
 - Example: A sum of two even numbers is even.

- Proof by cases
 - If can write $\forall x \ F(x)$ as $\forall x (G_1(x) \lor G_2(x) \lor \cdots \lor G_k(x)) \rightarrow H(x)$, prove $(G_1(x) \rightarrow H(x)) \land (G_2(x) \rightarrow H(x)) \land \cdots \land (G_k(x) \rightarrow H(x))$.
 - Example: triangle inequality ($|x + y| \leq |x| + |y|$)

- Proof by contraposition
 - To prove $\forall x \ G(x) \rightarrow H(x)$, prove $\forall x \neg H(x) \rightarrow \neg G(x)$
 - Example: If square of an integer is even, then this integer is even.

- Proof by contradiction
 - To prove $\forall x \ F(x)$, prove $\forall x \neg F(x) \rightarrow FALSE$
 - Example: $\sqrt{2}$ is not a rational number.
 - Example: There are infinitely many primes.
Puzzle: better than nothing

- Nothing is better than eternal bliss
- A burger is better than nothing

Therefore, a burger is better than eternal bliss.

Is there anything wrong with this argument?