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Puzzle 10 

• The first formulation of the 
famous liar’s paradox, 
attributed to a Cretan 
philosopher Epimenides, stated  
 

    “All Cretans are liars”.  
 
    Is this really a paradox? 



Puzzle 10 
• The first formulation of the famous liar’s 

paradox, attributed to a Cretan 
philosopher Epimenides, stated  
 

    “All Cretans are liars”.  
 
    Is this really a paradox? 

– The negation of “all” is “exists”,  
• just like the negation of “and” is “or”  

– So if Epimenides lied, what is true is that 
there are some truth-tellers on Crete (and 
potentially some liars, too)  

– And Epimenides is one of the liars.   
– However, “I am lying”  would be a paradox. 



 “NOT” makes life harder 

• It is easy to visualize a tree,  a number, or a 
person. It is harder to visualize a “not a tree”, 
“not a number” or “not a person”  

• So “NOT (ALL trees have leaves)” is harder to 
understand than “some trees have something 
other than leaves (e.g., needles).  

• Here we really need to pay attention to the 
domain of quantifiers! It stays the same when 
negating.  
– Not all integers are even:  ¬ ∀𝑥𝑥 ∈ ℤ  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑥𝑥  
                                                                   ≡   
– Some integers are not even ∃𝑥𝑥 ∈ ℤ  ¬𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑥𝑥   



Mixing quantifiers 
• We can make statements of predicate logic 

mixing existential and universal quantifiers. 
• Order of variables under the same quantifier 

does not matter. Under different ones does.  
– Predicate: Loves(x,y).  Domain: people.    
– Everybody loves somebody: ∀x ∃y Loves(x,y) 

• Normal people 
– Somebody loves everybody: ∃x ∀y Loves(x,y) 

• Mother Teresa 
–  Everybody is loved by somebody ∀x ∃y Loves(y,x) 

• Their mother 
– Somebody is loved by everybody ∃x ∀y Loves(y,x) 

• Elvis Presley 
– Everybody is loved by everybody  ∀x ∀y Loves(x,y) 

• Domain is a good family (not Meow-stery family) 
 

 
 



Negating mixed quantifiers 
• Now,  a “not” in front of such a sentence means 

all ∀ and ∃ are interchanged, and the inner part 
becomes negated.   
– Everybody loves somebody: ∀x ∃y Loves(x,y) 

• Somebody does not love anybody ∃ x ∀ y ¬Loves(x,y) 
• Can also say “Somebody loves nobody” in English.  
• Not the same as “somebody does not love everybody”: 

here, “somebody does not (love everybody)”  meaning 
∃𝑥𝑥 ¬ (∀𝑦𝑦 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 ≡   ∃𝑥𝑥 ∃𝑦𝑦 ¬𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦  

• But the formula ∃𝑥𝑥 ∃𝑦𝑦 ¬𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦  is the negation of 
∀𝑥𝑥 ∀𝑦𝑦 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦    

 



Negating mixed quantifiers 
– Everybody loves somebody: ∀x ∃y Loves(x,y) 

• Somebody does not love anybody ∃ X ∀ Y ¬Loves(x,y) 
 

– Somebody loves everybody: ∃x ∀y Loves(x,y) 
• Everyone doesn’t like somebody ∀x ∃y ¬ Loves(x,y) 

 
–  Everybody is loved by somebody ∀x ∃y Loves(y,x) 

• Somebody is not loved by anybody ∃x ∀y ¬ Loves(y,x) 
 

– Somebody is loved by everybody ∃x ∀y Loves(y,x) 
• For everyone, somebody does not love them ∀x ∃y ¬ Loves(y,x) 

 
– Everybody is loved by everybody \ ∀ x ∀y Loves(y,x) 

• Somebody does not love someone ∃x ∃y ¬ Loves(y,x) 

 
 



Scope of quantifiers  
• Like in programming, a scope of a quantified variable continues until a 

new variable with the same name is introduced.  
– ∀𝑥𝑥 ∃𝑦𝑦  𝑃𝑃 𝑥𝑥,𝑦𝑦 ∧ ∃𝑦𝑦 𝑄𝑄 𝑥𝑥,𝑦𝑦   

• For everybody there is somebody who loves them and somebody who hates them.  

– Not the same as  ∀𝑥𝑥 ∃𝑦𝑦  𝑃𝑃 𝑥𝑥,𝑦𝑦 ∧ 𝑄𝑄 𝑥𝑥, 𝑦𝑦  
• For everybody there is somebody who both loves and hates them.  

 
• Better to avoid using same names for  different variables – it is 

confusing.  
– ∀𝑥𝑥 ∃𝑦𝑦  𝑃𝑃 𝑥𝑥,𝑦𝑦 ∧ ∃𝑦𝑦 𝑄𝑄 𝑥𝑥,𝑦𝑦   

≡                                                                              
– ∀𝑥𝑥 ∃ 𝑦𝑦 𝑃𝑃 𝑥𝑥,𝑦𝑦 ∧ ∃𝑧𝑧 𝑄𝑄 𝑥𝑥, 𝑧𝑧  

≡                                                                               
– ∀𝑥𝑥∃ 𝑦𝑦 ∃𝑧𝑧 𝑃𝑃 𝑥𝑥,𝑦𝑦 ∧ 𝑄𝑄 𝑥𝑥, 𝑧𝑧    

≡                                                                               
– ∀𝑥𝑥∃ 𝑧𝑧 ∃𝑦𝑦 𝑃𝑃 𝑥𝑥,𝑦𝑦 ∧ 𝑄𝑄 𝑥𝑥, 𝑧𝑧    



Equivalence for predicate logic  
• Two predicate logic formulas are equivalent if they have 

the same truth value for every setting of free variables, 
no matter what the predicates are. 
–   ∃𝑦𝑦  𝑃𝑃 𝑥𝑥,𝑦𝑦 ∧ ∃𝑦𝑦 𝑄𝑄 𝑥𝑥,𝑦𝑦   

≡                                                                              
–  ∃ 𝑦𝑦 𝑃𝑃 𝑥𝑥,𝑦𝑦 ∧ ∃𝑧𝑧 𝑄𝑄 𝑥𝑥, 𝑧𝑧  

≡                                                                               
– ∃ 𝑦𝑦 ∃𝑧𝑧 𝑃𝑃 𝑥𝑥,𝑦𝑦 ∧ 𝑄𝑄 𝑥𝑥, 𝑧𝑧    

≡                                                                               
– ∃ 𝑧𝑧 ∃𝑦𝑦 𝑃𝑃 𝑥𝑥,𝑦𝑦 ∧ 𝑄𝑄 𝑥𝑥, 𝑧𝑧   
  
– But   ∃𝑥𝑥 ∀𝑦𝑦 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑧𝑧  is not equivalent to ∀𝑦𝑦 ∃𝑥𝑥 𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝑧𝑧  



Prenex normal form 
 

• When all quantified variables have different names, can 
move all quantifiers to the front of the formula, and get 
an equivalent formula: this is called prenex normal 
form.  
– ∀𝑥𝑥∃ 𝑦𝑦 ∃𝑧𝑧 𝑃𝑃 𝑥𝑥,𝑦𝑦 ∧ 𝑄𝑄 𝑥𝑥, 𝑧𝑧   is in prenex normal form 
– ∀𝑥𝑥 ∃ 𝑦𝑦 𝑃𝑃 𝑥𝑥,𝑦𝑦 ∧ ∃𝑧𝑧 𝑄𝑄 𝑥𝑥, 𝑧𝑧  is not in prenex normal 

form.  
• Be careful with implications: when in doubt, open 

into ¬𝐴𝐴 ∨ 𝐵𝐵.  Move all negations inside.  
– ∀𝑥𝑥  ( ∃𝑦𝑦 𝑃𝑃 𝑥𝑥,𝑦𝑦 → 𝑄𝑄 𝑥𝑥  ) actually has two universal 

quantifiers!  
– Its equivalent in prenex normal form is 
∀𝑥𝑥 ∀𝑦𝑦 ¬𝑃𝑃 𝑥𝑥,𝑦𝑦 ∨ 𝑄𝑄 𝑥𝑥  



 Quantifiers and conditionals 

• Which statements are true? 
– All squares are white. All white shapes are squares 
– All circles are blue. All blue shapes are circles.  

 
 
 

– All lemurs live in the trees. All animals living in the 
trees are lemurs.   

– ∀𝑥𝑥 ∈ 𝑆𝑆, 𝑃𝑃 𝑥𝑥 → 𝑄𝑄 𝑥𝑥  
• For all objects, if it is white, then it is a square.  
• If an object is white, then it is a square.  
• If an animal is a lemur, then it lives in the trees.  

 

 



 

• Then you should say what you mean,’ the March Hare went on. 
• `I do,’ Alice hastily replied; `at least–at least I mean what I say–that’s the 

same thing, you know.’ 
• `Not the same thing a bit!’ said the Hatter. `You might just as well say that 

“I see what I eat” is the same thing as “I eat what I see”!’ 
• `You might just as well say,’ added the March Hare, `that “I like what I get” 

is the same thing as “I get what I like”!’ 
• `You might just as well say,’ added the Dormouse, who seemed to be 

talking in his sleep, `that “I breathe when I sleep” is the same thing as “I 
sleep when I breathe”!’ 
 
 
 
 
 
 
 
 
 

•                            “Alice’s Adventures  in Wonderland”               
•                              by Lewis Carroll 
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