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Unit 9
Probability

Puzzle: playing poker

• There are 52 cards in a standard deck; 4 suits of 
13 ranks each. 

• In poker, some 5-card combinations (“hands”) 
are special:
– For example, a “three of a kind” consists of three 

cards with the same rank, together with two 
arbitrary cards.

• What are the chances to get 
– a three of a kind hand? 

– A two pairs hand (5 cards with 2 same-rank pairs)? 

– Other hands?... 

Finite probability

• Experiments:  producing an outcome out of possible choices

– Tossing a coin: outcome can be “heads”

– Getting a lottery ticket: outcome can be “win”

• Sample space S: set of all possible outcomes. 

– {heads, tails} for a coin toss 

– {1,2,3,4,5,6} x {1,2,3,4,5,6} for rolling two dice

• Event A ⊆ 𝑺: subset of  outcomes  

– Both dice came up even.  

Finite probability

• Probability of an event if all outcomes are equally likely: 
– Pr(A)=  |A|/|S|  (fraction of the outcomes that are in the event A). 
– Probability of both dice coming up even:  

• A={ (2,2),(2,4),(4,2),(2,6),(6,2),(4,4), (4,6), (6,4) , (6,6)}.
• |A| =9, |S|=36
• P(A)=9/36=1/4  

• Probability is always a number between 0 (event cannot happen, A=∅) 
and 1 (event always happens, A=S). 

• If Pr 𝐴 = 𝑝, then Pr ҧ𝐴 = 1 − 𝑝 (that is, probability that A does not 
happen is 1 – probability of A.)

Let’s use combinatorics we just studied to calculate probabilities! 

Puzzle: playing poker

• There are 52 cards in a standard deck; 4 suits of 13 ranks each. 

• In poker, some 5-card combinations (“hands”) are special:

– For example, a “three of a kind” consists of three cards with the same rank, 
together with two cards of other different ranks.

• How many ways are there to choose (ignoring the order)

– A royal flush?  

– a three of a kind hand? 

– a two pairs hand? 

– other hands?... 

Puzzle: playing poker

• There are 52 cards in a standard deck; 4 suits of 13 ranks each. 

• How many ways are there to choose a royal flush 
– all same suit, ranks A, K, Q, J, 10.  

– Pick a suit:  C(4,1) = 4

• How many ways to choose three of a kind?
– pick the rank: 13=C(13,1)

– Pick 3 out of 4 kinds of this rank:  4=C(4,3) 

– Pick two other ranks: C(12,2)= 66 

– Pick a suit of each of the other ranks: C(4,1)*C(4,1)=16

– Total: 13*4*66*16=54912
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Puzzle: playing poker

• What is the probability of getting  a three of 
a kind hand?

– Experiment: drawing a hand (5 cards). 

– Sample space S:  set of all possible hands. 

• Size of S is C(52, 5) = 52
5

= 2,598,962

– Event A: getting a three of a kind hand

• Size of the event A:   54,912

– Probability of A (all hands are equally likely):

• Pr(A) = 
𝐴

𝑆
= 0.0211. .

• What is the probability that walking down George street you’d see 
a pink elephant?

– Your friend says:  “It is ½!  You will either see the pink elephant, or not!” 

• Do you agree?  

Probabilities and pink elephants

• What is the probability that walking down George street you’d see 
a pink elephant?

– Your friend says:  “It is ½!  You will either see the pink elephant, or not!” 

• Do you agree?  

Probabilities and pink elephants

• What if outcomes are not equally likely?

– Biased coins, pink elephants, etc. 

• A function 𝑃𝑟: 𝑆 → ℝ is a probability distribution on (a 
finite set) S if 𝑃𝑟 satisfies the following:  

1) For any outcome  s ∈ 𝑆, 0 ≤ Pr 𝑠 ≤ 1

2) Σ 𝑠∈𝑆 Pr 𝑠 = 1

• Uniform distribution: for all  𝑠 ∈ 𝑆, Pr 𝑠 = 1/|𝑆|

– all outcomes are equally likely

– Fair coin:  Pr ℎ𝑒𝑎𝑑𝑠 = Pr 𝑡𝑎𝑖𝑙𝑠 =
1

2

Probabilities and distributions

• Lots of distributions other than uniform! 

• Biased coin: say heads twice as likely as tails.

– Pr ℎ𝑒𝑎𝑑𝑠 + Pr 𝑡𝑎𝑖𝑙𝑠 = 1.   

– Pr ℎ𝑒𝑎𝑑𝑠 = 2 ∗ Pr 𝑡𝑎𝑖𝑙𝑠

– So Pr ℎ𝑒𝑎𝑑𝑠 =
2

3
, Pr 𝑡𝑎𝑖𝑙𝑠 =

1

3

Biased coin
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Probabilities of events

• Probability of an event A is a sum of probabilities of the outcomes in A 

Pr(𝐴) = Σ 𝑎∈𝐴 Pr 𝑎

– Probability of A not occurring:   Pr ҧ𝐴 = 1 − Pr(𝐴)

• Probability of the union of two events (either A or B happens) is  
Pr 𝐴 ∪ B = Pr 𝐴 + Pr 𝐵 − Pr(𝐴 ∩ 𝐵)

• By principle of inclusion-exclusion

– If A and B are disjoint,  Pr 𝐴 ∩ 𝐵 = 0, so Pr 𝐴 ∪ 𝐵 = Pr 𝐴 + Pr 𝐵

• In general, if events 𝐴1…𝐴𝑛 are pairwise disjoint 

• that is, ∀𝑖, 𝑗 if 𝑖 ≠ 𝑗 then 𝐴𝑖 ∩ 𝐴𝑗 = ∅

– Then Pr(∪𝑖=1
𝑛 𝐴𝑖) = Pr 𝐴1 ∪ 𝐴2 ∪ ⋯∪ 𝐴𝑛 = Σ𝑖=1

𝑛 Pr 𝐴𝑖

Probabilities of events

• Suppose a die is biased so that 3 appears twice as often as any other number 
(others equally likely). 
– Probability of 3:  2/7. Probabilities of others: 1/7

• What is the probability that an odd number appears? 
– Event: A={1,3,5} 

– Pr(A) = 1/7+2/7+1/7=4/7. 

• What is a probability that  an odd number or a number divisible by 3 appears? 
– A={1,3,5},   B = {3,6} ,  𝐴 ∩ 𝐵 = 3

– Pr(A) = 4/7.  Pr(B) = 3/7. Pr(𝐴 ∩ 𝐵) = 2/7

– Pr(𝐴 ∪ 𝐵) = Pr({1,3,5,6}) =
4

7
+

3

7
−

2

7
=

1

7
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7
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7
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1

7
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5
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Birthday paradox

• How many people  have to be in the room 
so that probability that two of them have 
the same birthday is at least ½? 

Birthday paradox

• How many people  have to be in the room 
so that probability that two of them have 
the same birthday is at least ½? 

Birthday paradox

• How many people  have to be in the room so that probability 
that two of them have the same birthday is at least ½? 

– Considering all birthdays independent: no twins! 

• If there are twins in the room, then the probability is 1. 

• So no twins is the harder case. 

– And considering all days equally likely 

• Otherwise again probability would be higher. 

– Even counting leap years:  366 days. 

• So each person has probability 1/366 to have a birthday on any given day.

13 14
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Birthday paradox

• Let’s look at the first two people, first three, etc. 
– And calculate the probabilities of them all having different birthdays. 

• Product rule: number of combinations of distinct birthdays of the 
first 𝑖 people is P(366,i) = 366*365*…*(366-i+1) 
– Probability that the first 𝑖 people all have different birthday is         

𝑃 366,𝑖

366𝑖
=

365

366

364

366
…

366−𝑖+1

366

– So with probability 1 −
𝑃 366,𝑖

366𝑖
at least two out of first 𝑖 people have 

birthday on the same day. 
– That  works out to about 𝑖 =23 people to reach ½.

Only 23!  That’s why  it is called a paradox. 

Puzzle: Monty Hall problem

• Let’s make a deal! 
– A player picks a door.

– Behind one door is a car. 

– Behind two others are goats.

• A player chooses a door. 
– A host opens another door

– Shows a goat behind it.

– And asks the player if she wants to change her choice.

• Should she switch? 

Puzzle: Monty Hall problem

• Let’s make a deal! 
– A player has to pick a door.

– Behind one door is a car. 

– Behind two others are goats.

• A player chooses a door. 
– A host opens another door

– Shows a goat behind it.

– And asks the player if she wants to change her choice.

• Should she switch? 

Puzzle: Monty Hall problem

– A player has to pick a door. Behind one door is a car. Behind  other doors are goats.

– After the player chooses a door,  the host opens another door,  shows a goat behind 
it, and asks the player if she wants to change her choice.

• Should she switch? 

– Originally, probability of picking the car is 1/3

– If she first picked a door with a car: (1/3 probability)

• Then she would switch to a goat. 

– If she first picked a door with a goat (2/3 probability)

• Then she would switch to a car. 

– Yes, she should switch to increase her probability of getting a car! 

• Conditional probability of an event A given event B, denoted Pr 𝐴 𝐵 , is the 
probability of A if we know that B occurred. 

– Probability of rain given that it is cloudy is higher than just probability of rain.
• Probability of rain is lower given that it is sunny. 

– In the Monty Hall puzzle
• Probability of car behind door 2 is 1/3 

• Probability of a car behind door 2 conditional the host showing a goat behind door 3 is 2/3

• It is probability of both A and B, given that B  happened for sure:

Pr 𝐴 𝐵 =
Pr 𝐴 ∩ 𝐵

Pr(𝐵)
– Assume that Pr 𝐵 > 0 : after all, B did happen. 

Conditional probabilities
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• Suppose that there are 9,000 black bears and 1000 polar bears in our province, NL.  
Moreover, all polar bears and 2000 of black bears are in Labrador. 

• Let A be an event that a bear is a polar bear. 
• Let B be an event that a bear is in Labrador (rather than Newfoundland). 

– Probability that a random bear in NL is a polar bear: 

• Pr 𝐴 =
1000

1000+9000
=

1

10

– Probability that a random bear in NL is in Labrador: 

• Pr B =
1000+2000

1000+9000
=

3

10

– Probability of being both a polar bear and in Labrador is Pr 𝐴 ∩ 𝐵 =
1

10
• Same as probability of being a polar bear, since all polar bears are in Labrador

– Probability that a random bear is a polar bear conditional on it being in Labrador: 

Pr 𝐴 𝐵 =
Pr 𝐴 ∩ 𝐵

Pr 𝐵
=
1/10

3/10
=
1

3
=

1000

1000 + 2000
• With this data Pr 𝐴 ത𝐵 = 0.  A random bear in Newfoundland is a black bear. 

Conditional probabilities

• If knowing B gives us no information about A and vice versa,  then 
A and B are independent events: 

– Then Pr(A) = Pr(A|B) = 
Pr 𝐴∩𝐵

Pr 𝐵
.

– So A and B are independent iff Pr 𝐴 ∩ 𝐵 = Pr 𝐴 ⋅ Pr 𝐵 .
• In general, events 𝐴1…𝐴𝑛 can be pairwise independent (that is, any two 

𝐴𝑖 , 𝐴𝑗) are independent, or (stronger condition)  mutually independent:  
∀ T ⊆ {𝐴1, … , 𝐴𝑛} Pr

𝐴𝑖∈𝑇
𝐴𝑖 = ς𝐴𝑖∈𝑇

Pr 𝐴𝑖

That is, for every subset of these events, probability of them occurring together 
is the product of individual probabilities. 

– Different coin tosses/dice rolls are usually considered independent. 

Independent events

Contrapositive vs. Converse 

• “If a person is carrying a weapon, then the airport 
metal detector will ring”. 

– Same  as “If the airport metal detector does not ring, 
then the person is not carrying a weapon”.  

– Not the same as: “If the airport metal detector rings, 
then the person is carrying a weapon.”

• “If the person is sick, then the test is positive”.

• “If he is a murderer, his fingerprints are on the 
knife”. 

Sensitivity and specificity

• Let A:  “metal detector rings”, B:  “person carries a weapon”,   

Specificity:

percentage of correct negatives

• Pr( ҧ𝐴| ത𝐵) = Pr ҧ𝐴 ∩ ത𝐵 /Pr( ത𝐵)

• Probability that if the detector rings,

then the person has a weapon 

• Probability that if the person is 

not sick,  then the test is negative

• Test that always says “no” 

has 100% specificity.

Sensitivity: 

percentage  of correct positives

• Pr(A|B) = Pr 𝐴 ∩ 𝐵 /Pr(𝐵)

• Probability that if a person has a 

weapon,  then  detector rings 

• Probability that if the person is sick,

then the test is positive

• Test that always says “yes”                              
has 100% sensitivity

Sensitivity and specificity

Sensitivity: percentage  of correct (true) positives 
– Pr(A|B) = Pr 𝐴 ∩ 𝐵 /Pr(𝐵)

Specificity:  percentage of correct (true) negatives

– Pr( ҧ𝐴| ത𝐵) = Pr ҧ𝐴 ∩ ത𝐵 /Pr( ത𝐵)

++++  ++  
+++  ++ ++ 
++ ++ +    -
++  +   - - -
+ +  - - - -

+ - - --
- - -

- - - -
- - - - -
- - - - -

-

• 24 + (positives),  
• 30 - (negatives)
• 23 true positives

– One false negative

• 22 true negatives 
– 8 false positives

• Sensitivity: 100*23/24=96%
• Specificity: 100*22/30=73%

• Let green area be what test detected as positive 
(red as negative)

• Event A: in green area. Event B: “+” 

• The blue line represents correct separation 
between positives (+) and negatives (-) 

• Positive can mean “sick”, negative “healthy”

– The green part under blue line is false positives. 

– The red part above blue line is false negatives. 

25 26

27 28

29 30



2020-12-01

6

Medical test problem

• Consider a medical test that checks for a disease. This test
– Has false positive rate of 3% (healthy labeled as sick)

• Specificity 97%

– Has false negative rate of 1% (sick labeled as healthy). 
• Sensitivity 99%

• What is the probability that a person has the disease given that 
the test came positive? 
– Let A: person tested positive, B: person is sick. Pr 𝐵 𝐴 ?

– Pr(A|B) = 0.99, Pr( ҧ𝐴 𝐵 = 0.01. . .

• Not enough information! 

Bayes theorem

• Bayes theorem allows us to get Pr 𝐵 𝐴 from Pr 𝐴 𝐵 , if  we know 
probabilities  of A and  B:

Pr 𝐵 𝐴 =
Pr(𝐴|𝐵)⋅Pr 𝐵

Pr(𝐴)
=

Pr(𝐴|𝐵)⋅Pr 𝐵

Pr(𝐴|𝐵) Pr 𝐵 +Pr(𝐴| ത𝐵)Pr( ത𝐵)

• Proof:

– Pr 𝐴 𝐵 =
Pr 𝐴∩𝐵

Pr(𝐵)
. Pr 𝐵 𝐴 =

Pr 𝐴∩𝐵

Pr(𝐴)
. 

– Pr A ∩ 𝐵 = Pr 𝐴 𝐵 Pr 𝐵 = Pr 𝐵 𝐴 Pr(𝐴)
– So Pr 𝐵 𝐴 = Pr 𝐴 𝐵 Pr 𝐵 /Pr(𝐴)

• The formula Pr A = Pr(𝐴|𝐵) Pr 𝐵 + Pr(𝐴| ത𝐵) Pr( ത𝐵) comes from writing 
probability of A (e.g., a positive test) as sum of probabilities of A for B (sick 
people) and for ത𝐵 (healthy people).  

• Consider a medical test that 

– Has false positive rate of 3% (healthy labeled as sick).

– Has false negative rate of 1% (sick labeled as healthy).

– Tests for a disease that occurs in 5 in 1000 people.  

• What is the probability that a person is sick given that the test came positive? 

– Let A: person tested positive, B: person is sick. Pr 𝐵 𝐴 ?

– Pr(A|B) = 0.99, Pr( ҧ𝐴 𝐵 = 0.01. Pr( ҧ𝐴| ത𝐵) = 0.97 , Pr(𝐴 ത𝐵 = 0.03

– Pr 𝐵 = 0.005.

– Pr 𝐴 = Pr 𝐴 𝐵 Pr(𝐵) + Pr 𝐴 ത𝐵 Pr( ത𝐵) = 0.0348

– By Bayes theorem, Pr(B|A) =  
Pr 𝐴 𝐵 Pr 𝐵

Pr(𝐴)
= 0.1422

• So the probability that a person who tested positive has the disease is 
just 0.1422,  that is, 14.22%.  
– By a similar argument, probability that a person who tested negative does not 

have a disease is whopping 0.99995 =  99.995%. 

Pr 𝐵 𝐴 =
Pr(𝐴|𝐵) ⋅ Pr 𝐵

Pr(𝐴)

Hat check problem

• In Victorian England, n men came to an event, and checked in 
their hats at the door. 

– On the way out, in a hurry,  they each picked up a random hat. 

– On average, how many men picked their own hat? 

Expectations

• Often we are interested in what outcome we would see “on 
average”. 
– How fast does this program run “on average”?

• Let possible outcomes of an experiment be numbers 𝑎1, … , 𝑎𝑛
– E.g., time a program takes to sort n elements

• Its expected value (mean)  is Σ𝑘=1
𝑛 𝑎𝑘Pr(𝑎𝑘)

– Often phrased in terms of a “random variable” X, where X is a function from 
outcomes to numbers. 

– Write E(X) to mean the expected value (mean, expectation) of X.    

31 32

33 34
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Random variables

• “Random variable” X   is a function from outcomes to numbers. 
– In Computer Science applications, usually X counts something. 

• Number of heads out of n coin tosses. 

• Number of steps a program takes on an input

– An indicator random variable X takes value 0 or 1 depending on whether 
an event occurred or not.

• Expectation of a random variable X is  

E X = ෍

𝑖∈𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝑋 𝑖 ∗ Pr(𝑖)

Expectation example

Suppose we roll two fair dice. What is the expected sum of their values? 
• X can take values from 2 to 12. 

– Pr(X=2) = Pr(X=12) = 1/36
– Pr(X =3) = Pr(X =11) =2/36=1/18, 
– Pr(X =4) = Pr(X =10) =3/36=1/12, 
– Pr(X =5) = Pr(X =9) =4/36=1/9, 
– Pr(X =6) = Pr(X =8) =5/36, 
– Pr(X =7) =6/36=1/6

𝐸 𝑋 = 2 ·
1

36
+ 3 ·

1

18
+ 4 ·

1

12
+ 5 ·

1

9
+ 6 ·

5

36
+ 7 ·

1

6
+

8 ·
5

36
+ 9 ·

1

9
+ 10 ·

1

12
+ 11 ·

1

18
+ 12 ·

1

36
= 7

Expected win in a lottery

• Rules of Lotto 6/49:

– A player chooses 6 numbers, 1 to 49. 

– During a draw, 6 randomly generated numbers are revealed. 

– If all 6 numbers chosen by the player match 6 numbers in the draw, 
the player gets the jackpot of $5,000,000 or more. 

• There are also smaller prizes; let’s ignore them for simplicity. 

– A ticket costs $3. 

– According to Atlantic Lotto Corporation, chances of winning the 
jackpot are roughly 1/14,000,000.

Expected win in a lottery

• What is the expected amount a player would win if the jackpot is 
5,000,000?

– Pr(win) = 1/14,000,000.  Pr(loss)=1-Pr(win) = 13,999,999/14,000,000. 

– Let the random variable X encode the amount a player wins.  

• For all but one player, that amount is -3.  So Pr(X=-3)=Pr(loss)

• For the lucky one, the amount is the jackpot minus ticket price.   
Pr(X=4,999,997)=Pr(win)

– Expected amount to win is E(X) = Pr(loss)*(-3) +Pr(win)*(5,000,000-3) =  -2.64

• If counting smaller prizes , just add  their amount*odds  to the sum, and adjust Pr(loss)

• E(X)=Pr(loss)*(-3)+Pr(jackpot)*(4,999,997)+Pr(5/6+bonus)*374,997+Pr(5/6)*312,497…

Expected win in a lottery

• How large should be the jackpot so that the players expect at least 
to break even? 

– Let’s call the jackpot amount J. 

– Expected amount to win is E(X) = Pr(loss)*(-3) +Pr(win)*(J-3). 

• To break even, want E(X)=0. 

– J= 3+(E(X)-Pr(loss)*(-3))/Pr(win) =  42,000,000

37 38

39 40

41 42
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Bernoulli trials and repeated experiments

• Suppose an experiment has two outcomes, 1 and 0 (success/failure), with 
Pr(1) = p. 
– Such experiment is called a Bernoulli trial. 

• What happens if the experiment is repeated multiple times (independently)?

– A sample space after carrying out n Bernoulli trials is a set of all possible n-tuples of 
elements in {0,1} (or {success, fail}).  

– Number of n-tuples with k 1s is 𝑛
𝑘

– Probability of getting 1 in any given  trial is p, of getting 0 is  (1-p).

– Probability of getting exactly k 1s (successes) out of n trials is 𝑛
𝑘
𝑝𝑘 1 − 𝑝 𝑛−𝑘

– Probability of getting the first success on exactly the 𝑘𝑡ℎ trial is 𝑝 1 − 𝑝 𝑘−1

• How many trials do we need, on average, to get a success?

Expected number until… 

• Suppose that Alan insists on buying lottery tickets until he 
wins.  If probability of winning is 𝑝, how many tickets in 
expectation (“on average”) would he have to buy? 

– Let X be a random variable for how many tickets he has to buy. 

– The probability of winning on exactly 𝑖𝑡ℎ ticket is 𝑝 1 − 𝑝 𝑖−1

– 𝐸 𝑋 = Σ𝑖∈ℕ 𝑖 ∗ Pr 𝑋 = 𝑖 =
1

𝑝

• So for Lotto 6/49 he’d have to buy 14,000,000 tickets (and spend $42,000,000  
-- that’s jackpot that would let him break even! )

Expected number until… 

• Suppose we have Bernoulli trials with success probability 𝑝. What is 
the expected number of trials to see success? 
– Let X be a random variable for the number of steps till success. 

– 𝐸 𝑋 = Σ𝑖∈ℕ 𝑖 ∗ Pr 𝑋 = 𝑖 =
1

𝑝

• Same reasoning applies to other processes, where there is a fixed 
probability of something happening at each experiment or time step. 
– A system has a 1%  probability of hanging in any given hour.  How long, on 

average, will it stay up? 
• 100 hours: a little over 4 days. 

Linearity of expectation

• Expectation is a very well-behaved operation: 

– 𝐸 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛 = 𝐸 𝑋1 +⋯+ 𝐸 𝑋𝑛
– 𝐸 𝑎𝑋 + 𝑏 = 𝑎 𝐸 𝑋 + 𝑏

• Where 𝑋1…𝑋𝑛 are random variables on some sample space S, and 𝑎, 𝑏 ∈ ℝ

• Proof: 

– 𝐸 𝑋1 + 𝑋2 = Σ𝑠∈𝑆 𝑝 𝑠 (𝑋1 𝑠 + 𝑋2(𝑠))

= Σ𝑠∈𝑆 𝑝 𝑠 𝑋1 𝑠 + Σ𝑠∈𝑆 𝑝 𝑠 𝑋2 𝑠 = 𝐸 𝑋1 + 𝐸 𝑋2
– Similar for 𝐸 𝑎𝑋 + 𝑏 = 𝑎 𝐸 𝑋 + 𝑏

• Using the fact that Σ𝑠∈𝑆 𝑝 𝑠 =1 

Hat check problem

• In Victorian England, n men came to an event, and checked in 
their hats at the door. 

– On the way out, in a hurry,  they each picked up a random hat. 

– On average, how many men picked their own hat? 

43 44
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Hat check problem
In Victorian England, n men came to an event, and checked in their hats at the door. 

– On the way out, in a hurry,  they each picked up a random hat. 
– On average, how many men picked their own hat? 

• For each man, introduce a random variable 𝑋𝑖 , where 𝑋𝑖 = 1 iff he 
picked his own hat
– Such random variables are called indicator variables.
– The quantity we want is 𝐸(𝑋1 +⋯+ 𝑋𝑛)

– Now, for each 𝑋𝑖 , 𝐸 𝑋𝑖 = 1 ⋅ Pr 𝑋𝑖 = 1 =
1

𝑛

– By linearity of expectation, 𝐸 𝑋1 +⋯+ 𝑋𝑛 = 𝐸 𝑋1 +⋯+ 𝐸 𝑋𝑛 =
1

𝑛
+

⋯+
1

𝑛
= 𝑛 ⋅

1

𝑛
= 1

• So on average, just one man will go home with his own hat!  

Hat check problem 2

• In Victorian England, n men came to an event, and checked in 
their hats at the door. 

– On the way out, in a hurry,  they each picked up a random hat. 

– What is the probability that at least k of them got their own hat? 

Deviation from the expectation

“ three-quarters (73 percent) of U.S. drivers consider 

themselves better-than-average drivers” [AAA]. 

• Let R be a (nonnegative) random variable.  What is the 
probability that 𝑅 ≥ 𝑥?

• Markov’s inequality:  Pr 𝑅 ≥ 𝑥 ≤
𝐸 𝑅

𝑥

– Since R is nonnegative,  𝐸 𝑅 ≥ 𝑥𝑃𝑟 𝑅 ≥ 𝑥 + 0Pr R < x

– So E R ≥ 𝑥𝑃𝑟 𝑅 ≥ 𝑥 .

Using Markov’s inequality 

• Markov’s inequality:  Pr 𝑅 ≥ 𝑥 ≤
𝐸 𝑅

𝑥

• Let’s use Markov’s inequality in the Hat Check Problem 
– Let   R = 𝑋1 +⋯+ 𝑋𝑛
– each 𝑋𝑖 is an indicator variable for ith man getting his hat. 

– By Markov’s inequality,   Pr 𝑅 ≥ 𝑘 ≤
𝐸 𝑅

𝑘
=

1

𝑘
.

• But that’s a pretty weak bound!  

– Probability that everybody gets their hat is Pr 𝑅 ≥ 𝑛 ≤
1

𝑛
by Markov’s inequality

– However, we can calculate that it is only 
1

𝑛!

Variance

Let’s define the expectation of the difference from the mean.

Let 𝑋 be a random variable on a sample space S. Define variance of X, denoted 𝑉 𝑋 to be   

𝑉 𝑋 = 𝐸𝑠∈𝑆 𝑋 − 𝐸 𝑋
2

=෍

𝑠∈𝑆

𝑋 𝑠 − 𝐸 𝑋
2
⋅ 𝑃𝑟(𝑠)

A standard deviation of X, denoted 𝜎(𝑋) where 𝜎 is a Greek letter sigma,  is 𝜎 𝑋 = 𝑉(𝑋)

Useful equality:  𝑉 𝑋 = 𝐸 𝑋2 − 𝐸 𝑋
2

• That is, the variance of X can be expressed as the difference between the expectation of 𝑋2

and square of 𝐸 𝑋 .
• To prove this, just open parentheses in our original definition of 𝑉 𝑋 , and use the fact that 

σ𝑠∈𝑆 𝑃𝑟(𝑠) = 1. 
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Variance

Variance of a random variable X on a sample space S is: 

𝑉 𝑋 = 𝐸𝑠∈𝑆 𝑋 − 𝐸 𝑋
2

=෍

𝑠∈𝑆

𝑋 𝑠 − 𝐸 𝑋
2
⋅ 𝑃𝑟 𝑠 = 𝐸 𝑋2 − 𝐸 𝑋

2

A standard deviation of X is 𝜎 𝑋 = 𝑉(𝑋)

Example:  consider again throwing a fair die 
• and let 𝑋 be a random variable for the number that comes up

– So X takes values 1,2,3,4,5,6 with equal probability 1/6. 

• 𝐸 𝑋 = σ𝑟∈ 1,2,3,4,5,6 𝑟 ⋅
1

6
=

7

2
. 

• 𝐸 𝑋2 = σ𝑟∈ 1,2,3,4,5,6 𝑟2 ⋅
1

6
=

1

6
12 + 22 +⋯+ 62 =

91

6
. 

• 𝑉 𝑋 =
91

6
−

7

2

2
=

35

12
.     And 𝜎 𝑋 =

35

12
≈1.7 

Variance in the hat check problem

Variance of a random variable X on a sample space S is:   𝑉 𝑋 = 𝐸 𝑋2 − 𝐸 𝑋
2

• Example: variance in the hat check problem. 
– Let   R = 𝑋1 +⋯+ 𝑋𝑛 for indicator variables 𝑋𝑖 : man 𝑖 gets his hat. 
– 𝐸 𝑅 = 1.

– 𝐸 𝑅2 = 𝐸 σ𝑖=1
𝑛 𝑋𝑖

2 = 𝐸 σ𝑖=1
𝑛 𝑋𝑖

2 +σ𝑖=1
𝑛 σ𝑗=1,

𝑗≠𝑖

𝑛 𝑋𝑖𝑋𝑗 = 𝐸(σ𝑖=1
𝑛 𝑋𝑖

2) +𝐸(σ𝑖=1
𝑛 σ𝑗=1,

𝑗≠𝑖

𝑛 𝑋𝑖𝑋𝑗)

– 𝐸 𝑋𝑖
2 = 12 ⋅

1

𝑛
=

1

𝑛
, 𝑠𝑜 𝐸(σ𝑖=1

𝑛 𝑋𝑖
2) = σ𝑖=1

𝑛 𝐸(𝑋𝑖
2) =1

– 𝐸 𝑋𝑖𝑋𝑗 =
1

𝑛(𝑛−1)
,      so 𝐸 σ𝑖=1

𝑛 σ𝑗=1,
𝑗≠𝑖

𝑛 𝑋𝑖𝑋𝑗 = (𝑛2−𝑛) ⋅
1

𝑛 𝑛−1
= 1

– So E R2 = 𝐸 σ𝑖=1
𝑛 𝑋𝑖

2 = 1 + 1 = 2.

Finally,  𝑉 𝑅 = 𝐸 𝑅2 − 𝐸 𝑅
2
= 2 − 1 2 = 1.

Independent random variables 

• Similar to independent events:  
– Random variables 𝑋, 𝑌 are independent iff

∀𝑟1, 𝑟2 ∈ ℝ Pr 𝑋 = 𝑟1 ∧ 𝑌 = 𝑟2 = Pr 𝑋 = 𝑟1 ⋅ Pr(𝑌 = 𝑟2)

• Example: Suppose a pair of fair dice is thrown,  with 
𝑋1: number on the first die, 𝑋2: number on the second die, 𝑌: total amount 

– Then Pr 𝑋1 = 𝑖 ∧ 𝑋2 = 𝑗 = Pr 𝑋1 = 𝑖 ⋅ Pr 𝑋2 = 𝑗 =
1

36
for all 𝑖, 𝑗 ∈ {1,2,3,4,5,6}

which are the only values 𝑋1 and 𝑋2 take. So 𝑋1 and 𝑋2 are independent.

– But 𝑋1and Y are not independent:  Pr 𝑋1 = 1 ∧ 𝑌 = 12 = 0, whereas

Pr 𝑋1 = 1 =
1

6
, and Pr 𝑌 = 12 =

1

36
, so Pr 𝑋1 = 1 ⋅ Pr 𝑌 = 12 =

1

216
≠ 0.

Variance of Bernoulli trials

• When random variables 𝑋, 𝑌 are independent, then 

– 𝐸 𝑋𝑌 = 𝐸 𝑋 ⋅ 𝐸 𝑌

– V 𝑋 + 𝑌 = 𝑉 𝑋 + 𝑉(𝑌)

• With this, we can calculate the variance of the number of successes in 
𝑛 Bernoulli trials where in each trial the probability of success is 𝑝.
– For a single trial: let 𝑋 = 1 iff success, 𝑋 = 0 iff failure.  

• Then 𝐸 𝑋 = 𝑝,   𝐸 𝑋2 = 𝑝, so 𝑉 𝑋 = 𝐸 𝑋2 − 𝐸 𝑋
2
= 𝑝 − 𝑝2 = 𝑝(1 − 𝑝)

– Let  𝑋1…𝑋𝑛 be indicator variables so that 𝑋𝑖 = 1 iff 𝑖𝑡ℎ trial is a  success.

– They are independent,  so 𝑉 𝑋1 +⋯+ 𝑋𝑛 = σ𝑖=1
𝑛 𝑉 𝑋𝑖 = 𝑛𝑝(1 − 𝑝)

Chebyshev’s inequality

• Now that we have the notion of variance, we can get a better 
bound on the probability of being away from the mean: 

• Chebyshev’s inequality:  Let 𝑥 > 0. Then 

Pr |𝑅 − 𝐸 𝑅 | ≥ 𝑥 ≤
𝑉 𝑅

𝑥2

Proof:  

– 𝑅 − 𝐸 𝑅 ≥ 𝑥 is equivalent to 𝑅 − 𝐸 𝑅
2
≥ 𝑥2.

– By Markov’s inequality, Pr 𝑅 − 𝐸 𝑅
2
≥ 𝑥2 ≤

𝐸( 𝑅−𝐸 𝑅
2
)

𝑥2
=

𝑉 𝑅

𝑥2

Better estimate for Hat Check

• Chebyshev’s inequality: Let 𝑥 > 0. Then 

Pr |𝑅 − 𝐸 𝑅 | ≥ 𝑥 ≤
𝑉 𝑅

𝑥2

• Example: hat check problem again. 

– Let   R = 𝑋1 +⋯+ 𝑋𝑛 for indicator variables 𝑋𝑖: man 𝑖 gets his hat. 

– We have shown that E R = 1, and that 𝑉 𝑅 = 1 as well. 

– Let 𝑘 ≥ 2. Since 𝑅 ≥ 0, Pr 𝑅 ≥ 𝑘 = Pr 𝑅 − 1 ≥ 𝑘 − 1 ≤ 1/ 𝑘 − 1 2

• This gives a tighter bound than Markov’s inequality. 
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Team selection puzzle
• Imagine that your friend is a project manager, and her 

team consist of great programmers – if only she could 
get them to stop fighting among each other!  
– She decides to split them in two smaller teams

• To minimize fighting within each team.
– She knows who fights with whom (the “CONFLICT 

relation”), but how can she do the splitting? 
• And is it possible at all to eliminate at least half 

the conflicts? If not, why bother…

• Do you think it is possible to split any group 
into two teams 
– to eliminate all conflicts? 
– How about eliminating half the conflicts?
– How would you do the splitting? 

• Suppose this is the graph of the 
CONFLICT relation for a group.

– Here, lines are double-direction 
arrows, since CONFLICT is symmetric. 

– What do you think is the best split?
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