

1

Finite probability

- Experiments: producing an outcome out of possible choices
- Tossing a coin: outcome can be "heads"
- Getting a lottery ticket: outcome can be "win"
- Sample space S: set of all possible outcomes.
- \{heads, tails\} for a coin toss
$-\{1,2,3,4,5,6\} \times\{1,2,3,4,5,6\}$ for rolling two dice
- Event $A \subseteq S$: subset of outcomes

- Both dice came up even.

3

Puzzle: playing poker

- There are 52 cards in a standard deck; 4 suits of 13 ranks each.
- In poker, some 5-card combinations ("hands") are special:
- For example, a "three of a kind" consists of three cards with the same rank, together with two cards of other different ranks.
- How many ways are there to choose (ignoring the order)

> - A royal flush?

- a three of a kind hand?
- a two pairs hand?
- other hands?...

Puzzle: playing poker

- There are 52 cards in a standard deck; 4 suits of 13 ranks each.
- In poker, some 5-card combinations ("hands") are special:
- For example, a "three of a kind" consists of three cards with the same rank, together with two arbitrary cards.
- What are the chances to get
- a three of a kind hand?
- A two pairs hand (5 cards with 2 same-rank pairs)?
- Other hands?...

2

Finite probability

- Probability of an event if all outcomes are equally likely:
$-\operatorname{Pr}(A)=|A| /|S|$ (fraction of the outcomes that are in the event A).
- Probability of both dice coming up even:
- $A=\{(2,2),(2,4),(4,2),(2,6),(6,2),(4,4),(4,6),(6,4),(6,6)\}$.
- $|A|=9,|S|=36$
- $P(A)=9 / 36=1 / 4$
- Probability is always a number between 0 (event cannot happen, $A=\varnothing$) and 1 (event always happens, $\mathrm{A}=\mathrm{S}$).
- If $\operatorname{Pr}(A)=p$, then $\operatorname{Pr}(\bar{A})=1-p$ (that is, probability that A does not happen is 1 - probability of A.)

Let's use combinatorics we just studied to calculate probabilities!

4

Puzzle: playing poker

- There are 52 cards in a standard deck; 4 suits of 13 ranks each.
- How many ways are there to choose a royal flush
- all same suit, ranks A, K, Q, J, 10.
- Pick a suit: $C(4,1)=4$
- How many ways to choose three of a kind?
- pick the rank: $13=C(13,1)$
- Pick 3 out of 4 kinds of this rank: $4=C(4,3)$

- Pick two other ranks: $C(12,2)=66$
- Pick a suit of each of the other ranks: $C(4,1)^{*} C(4,1)=16$
- Total: 13*4*66*16=54912

6

Puzzle: playing poker

- What is the probability of getting a three of a kind hand?
- Experiment: drawing a hand (5 cards).
- Sample space S : set of all possible hands.

$$
\text { - Size of } \mathrm{S} \text { is } \mathrm{C}(52,5)=\binom{52}{5}=2,598,962
$$

- Event A: getting a three of a kind hand
- Size of the event A: 54,912
- Probability of A (all hands are equally likely):
- $\operatorname{Pr}(\mathrm{A})=\frac{|A|}{|S|}=0.0211$. .

7

9

Probabilities and pink elephants

- What is the probability that walking down George street you'd see a pink elephant?
- Your friend says: "It is $1 / 2$! You will either see the pink elephant, or not!"
- Do you agree?

10

Probabilities and distributions

- What if outcomes are not equally likely?
- Biased coins, pink elephants, etc.
- A function $\operatorname{Pr}: S \rightarrow \mathbb{R}$ is a probability distribution on (a finite set) S if Pr satisfies the following:

1) For any outcome $s \in S, 0 \leq \operatorname{Pr}(s) \leq 1$
2) $\Sigma_{\{s \in S\}} \operatorname{Pr}(s)=1$

- Uniform distribution: for all $s \in S, \operatorname{Pr}(s)=1 /|S|$
- all outcomes are equally likely
- Fair coin: $\operatorname{Pr}($ heads $)=\operatorname{Pr}($ tails $)=\frac{1}{2}$

Probabilities of events

Probabilities of events

- Suppose a die is biased so that 3 appears twice as often as any other number (others equally likely).
- Probability of 3: 2/7. Probabilities of others: 1/7
- What is the probability that an odd number appears?
- Event: $A=\{1,3,5\}$
$-\operatorname{Pr}(A)=1 / 7+2 / 7+1 / 7=4 / 7$.
- What is a probability that an odd number or a number divisible by 3 appears?
$-\mathrm{A}=\{1,3,5\}, \quad \mathrm{B}=\{3,6\}, A \cap B=\{3\}$
$-\operatorname{Pr}(A)=4 / 7 . \operatorname{Pr}(B)=3 / 7 . \operatorname{Pr}(A \cap B)=2 / 7$
$-\operatorname{Pr}(A \cup B)=\operatorname{Pr}(\{1,3,5,6\})=\frac{4}{7}+\frac{3}{7}-\frac{2}{7}=\frac{1}{7}+\frac{2}{7}+\frac{1}{7}+\frac{1}{7}=\frac{5}{7}$
14
13

15

16

17

Birthday paradox

- How many people have to be in the room so that probability that two of them have the same birthday is at least $1 / 2$?
- Considering all birthdays independent: no twins!
- If there are twins in the room, then the probability is 1.
- So no twins is the harder case.
- And considering all days equally likely
- Otherwise again probability would be higher.
- Even counting leap years: 366 days.

- So each person has probability $1 / 366$ to have a birthday on any given day.

Birthday paradox

- Let's look at the first two people, first three, etc.
- And calculate the probabilities of them all having different birthdays.
- Product rule: number of combinations of distinct birthdays of the first i people is $\mathrm{P}(366, i)=366^{*} 365^{*} . . . *(366-\mathrm{i}+1)$
- Probability that the first i people all have different birthday is $\frac{P(366, i)}{366^{i}}=\frac{365}{366} \frac{364}{366} \ldots \frac{(366-i+1)}{366}$
- So with probability $1-\frac{P(366, i)}{366^{i}}$ at least two out of first i people have birthday on the same day.
- That works out to about $i=23$ people to reach $1 / 2$.

Only 23! That's why it is called a paradox.

19

21
22

Puzzle: Monty Hall problem

- Let's make a deal!
- A player picks a door.
- Behind one door is a car.
- Behind two others are goats
- A player chooses a door.
- A host opens another door
- Shows a goat behind it.

- And asks the player if she wants to change her choice.
- Should she switch?

Puzzle: Monty Hall problem

- Let's make a deal!
- A player has to pick a door.
- Behind one door is a car.
- Behind two others are goats.
- A player chooses a door.
- A host opens another door

- Shows a goat behind it.
- And asks the player if she wants to change her choice.
- Should she switch?

Conditional probabilities

- Conditional probability of an event A given event B , denoted $\operatorname{Pr}(A \mid B)$, is the probability of A if we know that B occurred.
- Probability of rain given that it is cloudy is higher than just probability of rain.
- Probability of rain is lower given that it is sunny.
- In the Monty Hall puzzle
- Probability of car behind door 2 is $1 / 3$
- Probability of a car behind door 2 conditional the host showing a goat behind door 3 is $2 / 3$

It is probability of both A and B, given that B happened for sure:

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

- Assume that $\operatorname{Pr}(B)>0$: after all, B did happen.

Conditional probabilities

Suppose that there are 9,000 black bears and 1000 polar bears in our province, NL. Moreover, all polar bears and 2000 of black bears are in Labrador.
Let A be an event that a bear is a polar bear.

- Probability that a random bear in NL is a polar bear:

$$
\text { - } \operatorname{Pr}(A)=\frac{1000}{1000+9000}=\frac{1}{10}
$$

- Probability that a random bear in NL is in Labrador:

$$
\text { - } \operatorname{Pr}(\mathrm{B})=\frac{1000+2000}{1000+9000}=\frac{3}{10}
$$

- Probability of being both a polar bear and in Labrador is $\operatorname{Pr}(A \cap B)=\frac{1}{10}$
- Same as probability of being a polar bear, since all polar bears are in Labrador ${ }^{10}$
- Probability that a random bear is a polar bear conditional on it being in Labrador:

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}=\frac{1 / 10}{3 / 10}=\frac{1}{3}=\frac{1000}{1000+2000}
$$

- With this data $\operatorname{Pr}(A \mid \bar{B})=0$. A random bear in Newfoundland is a black bear.

Contrapositive vs. Converse

- "If a person is carrying a weapon, then the airport metal detector will ring".
- Same as "If the airport metal detector does not ring, then the person is not carrying a weapon".
- Not the same as: "If the airport metal detector rings, then the person is carrying a weapon."
- "If the person is sick, then the test is positive".
- "If he is a murderer, his fingerprints are on the
 knife".

27
28

Sensitivity and specificity

- Let A: "metal detector rings", B: "person carries a weapon",

Sensitivity:

percentage of correct positives

- $\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(A \cap B) / \operatorname{Pr}(B)$
- Probability that if a person has a weapon, then detector rings
- Probability that if the person is sick, then the test is positive
- Test that always says "yes" has 100% sensitivity

Specificity:

percentage of correct negatives

- $\operatorname{Pr}(\bar{A} \mid \bar{B})=\operatorname{Pr}(\bar{A} \cap \bar{B}) / \operatorname{Pr}(\bar{B})$
- Probability that if the detector rings, then the person has a weapon
- Probability that if the person is not sick, then the test is negative
- Test that always says "no" has 100% specificity.

Sensitivity and specificity

Sensitivity: percentage of correct (true) positives $-\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(A \cap B) / \operatorname{Pr}(B)$
Specificity: percentage of correct (true) negatives
$-\operatorname{Pr}(\bar{A} \mid \bar{B})=\operatorname{Pr}(\bar{A} \cap \bar{B}) / \operatorname{Pr}(\bar{B})$

- Let green area be what test detected as positive (red as negative)
- Event A : in green area. Event B: " + "
- The blue line represents correct separation between positives (+) and negatives (-) - Positive can mean "sick", negative "healthy"
- The green part under blue line is false positives. - The red part above blue line is false negatives.
- 24 + (positives)
- 30 - (negatives)
- 23 true positives
- One false negative
- 22 true negatives
- 8 false positives
- Sensitivity: $100 * 23 / 24=96 \%$
- Specificity: $100 * 22 / 30=73 \%$

Medical test problem

- Consider a medical test that checks for a disease. This test
- Has false positive rate of 3% (healthy labeled as sick) - Specificity 97%
- Has false negative rate of 1% (sick labeled as healthy).
- Sensitivity 99%
- What is the probability that a person has the disease given that the test came positive?
- Let A : person tested positive, B : person is sick. $\operatorname{Pr}(B \mid A)$?
$-\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=0.99, \operatorname{Pr}(\bar{A} \mid B)=0.01 \ldots$
- Not enough information!

31

32

- Consider a medical test that

$\operatorname{Pr}(B \mid A)=\frac{\operatorname{Pr}(A \mid B) \cdot \operatorname{Pr}(B)}{\operatorname{Pr}(A)}$

- Has false positive rate of 3\% (healthy labeled as sick).
- Has false negative rate of 1% (sick labeled as healthy).
- Tests for a disease that occurs in 5 in 1000 people.
- What is the probability that a person is sick given that the test came positive?
- Let A : person tested positive, B : person is sick. $\operatorname{Pr}(B \mid A)$?
$-\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=0.99, \operatorname{Pr}(\bar{A} \mid B)=0.01 . \operatorname{Pr}(\bar{A} \mid \bar{B})=0.97, \operatorname{Pr}(A \mid \bar{B})=0.03$
$-\operatorname{Pr}(B)=0.005$.
$-\operatorname{Pr}(A)=\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)+\operatorname{Pr}(A \mid \bar{B}) \operatorname{Pr}(\bar{B})=0.0348$
- By Bayes theorem, $\operatorname{Pr}(B \mid A)=\frac{\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)}{\operatorname{Pr}(A)}=0.1422$
- So the probability that a person who tested positive has the disease is just 0.1422, that is, 14.22%.
- By a similar argument, probability that a person who tested negative does not have a disease is whopping $0.99995=99.995 \%$.

33

Hat check problem

- In Victorian England, n men came to an event, and checked in their hats at the door.
- On the way out, in a hurry, they each picked up a random hat.
- On average, how many men picked their own hat?

34

35

Expectations

- Often we are interested in what outcome we would see "on average".
- How fast does this program run "on average"?
- Let possible outcomes of an experiment be numbers a_{1}, \ldots, a_{n}
- E.g., time a program takes to sort n elements
- Its expected value (mean) is $\Sigma_{k=1}^{n} a_{k} \operatorname{Pr}\left(a_{k}\right)$
- Often phrased in terms of a "random variable" X, where X is a function from outcomes to numbers.
- Write $E(X)$ to mean the expected value (mean, expectation) of X.

Random variables

- "Random variable" X is a function from outcomes to numbers.
- In Computer Science applications, usually X counts something
- Number of heads out of n coin tosses.
- Number of steps a program takes on an input
- An indicator random variable X takes value 0 or 1 depending on whether an event occurred or not.
- Expectation of a random variable X is

$$
\mathrm{E}(\mathrm{X})=\sum_{i \in \text { outcomes }} X(i) * \operatorname{Pr}(i)
$$

37

649

- Rules of Lotto 6/49:
- A player chooses 6 numbers, 1 to 49.
- During a draw, 6 randomly generated numbers are revealed.
- If all 6 numbers chosen by the player match 6 numbers in the draw, the player gets the jackpot of $\$ 5,000,000$ or more.
- There are also smaller prizes; let's ignore them for simplicity.
- A ticket costs \$3.
- According to Atlantic Lotto Corporation, chances of winning the jackpot are roughly $1 / 14,000,000$.

Expected win in a lottery

Expected win in a lottery

- How large should be the jackpot so that the players expect at least to break even?
- Let's call the jackpot amount J.
- Expected amount to win is $E(X)=\operatorname{Pr}(\text { loss })^{*}(-3)+\operatorname{Pr}(\text { win })^{*}(J-3)$.
- To break even, want $E(X)=0$.
$-J=3+\left(E(X)-\operatorname{Pr}(\text { loss })^{*}(-3)\right) / \operatorname{Pr}($ win $)=42,000,000$

Bernoulli trials and repeated experiments

- Suppose an experiment has two outcomes, 1 and 0 (success/failure), with $\operatorname{Pr}(1)=p$.
- Such experiment is called a Bernoulli trial.
- What happens if the experiment is repeated multiple times (independently)?
- A sample space after carrying out n Bernoulli trials is a set of all possible n-tuples of elements in $\{0,1\}$ (or \{success, fail\}).
- Number of n -tuples with k 1 s is $\binom{n}{k}$
- Probability of getting 1 in any given trial is p, of getting 0 is (1-p).
- Probability of getting exactly k 1 s (successes) out of n trials is $\binom{n}{k} p^{k}(1-p)^{n-k}$
- Probability of getting the first success on exactly the $k^{t h}$ trial is $p(1-p)^{k-1}$
- How many trials do we need, on average, to get a success?

43
44

- Suppose that Alan insists on buying lottery tickets until he wins. If probability of winning is p, how many tickets in expectation ("on average") would he have to buy?
- Let X be a random variable for how many tickets he has to buy.
- The probability of winning on exactly $i^{\text {th }}$ ticket is $p(1-p)^{i-1}$
$-E(X)=\Sigma_{i \in \mathbb{N}} i * \operatorname{Pr}(X=i)=\frac{1}{p}$
- So for Lotto 6/49 he'd have to buy 14,000,000 tickets (and spend \$42,000,000 -- that's jackpot that would let him break even!)

Expected number until...

(

Expected number until...

- Suppose we have Bernoulli trials with success probability p. What is the expected number of trials to see success?
- Let X be a random variable for the number of steps till success.

$$
-E(X)=\Sigma_{i \in \mathbb{N}} i * \operatorname{Pr}(X=i)=\frac{1}{p}
$$

- Same reasoning applies to other processes, where there is a fixed probability of something happening at each experiment or time step.
- A system has a 1% probability of hanging in any given hour. How long, on
average, will it stay up?
- 100 hours: a little over 4 days.

45
46

Linearity of expectation

- Expectation is a very well-behaved operation:
$-E\left(X_{1}+X_{2}+\cdots+X_{n}\right)=E\left(X_{1}\right)+\cdots+E\left(X_{n}\right)$
$-E(a X+b)=a E(X)+b$
- Where $X_{1} \ldots X_{n}$ are random variables on some sample space S , and $a, b \in \mathbb{R}$
- Proof:

$$
\begin{aligned}
& -E\left(X_{1}+X_{2}\right)=\Sigma_{s \in S} p(s)\left(X_{1}(s)+X_{2}(s)\right) \\
& \quad=\Sigma_{s \in S} p(s) X_{1}(s)+\Sigma_{s \in S} p(s) X_{2}(s)=E\left(X_{1}\right)+E\left(X_{2}\right) \\
& - \text { Similar for } E(a X+b)=a E(X)+b \\
& \quad \text { - Using the fact that } \Sigma_{s \in S} p(s)=1
\end{aligned}
$$

Hat check problem

- In Victorian England, n men came to an event, and checked in their hats at the door.
- On the way out, in a hurry, they each picked up a random hat.
- On average, how many men picked their own hat?

Hat check problem

In Victorian England, n men came to an event, and checked in their hats at the door. - On the way out, in a hurry, they each picked up a random hat. - On average, how many men picked their own hat?

- For each man, introduce a random variable X_{i}, where $X_{i}=1$ iff he picked his own hat
- Such random variables are called indicator variables.
- The quantity we want is $E\left(X_{1}+\cdots+X_{n}\right)$
- Now, for each $X_{i}, E\left(X_{i}\right)=1 \cdot \operatorname{Pr}\left(X_{i}=1\right)=\frac{1}{n}$
- By linearity of expectation, $E\left(X_{1}+\cdots+X_{n}\right)=E\left(X_{1}\right)+\cdots+E\left(X_{n}\right)=\frac{1}{n}+$ $\cdots+\frac{1}{n}=n \cdot \frac{1}{n}=1$
- So on average, just one man will go home with his own hat!

49
50

Hat check problem 2

- In Victorian England, n men came to an event, and checked in their hats at the door.
- On the way out, in a hurry, they each picked up a random hat.
- What is the probability that at least k of them got their own hat?

51

Deviation from the expectation
 ,

" three-quarters (73 percent) of U.S. drivers consider themselves better-than-average drivers" [AAA].

- Let R be a (nonnegative) random variable. What is the probability that $R \geq x$?
- Markov's inequality: $\operatorname{Pr}(R \geq x) \leq \frac{E(R)}{x}$
- Since R is nonnegative, $E(R) \geq x \operatorname{Pr}(R \geq x)+0 \operatorname{Pr}(\mathrm{R}<\mathrm{x})$

$$
-\mathrm{So} \mathrm{E}(\mathrm{R}) \geq x \operatorname{Pr}(R \geq x) .
$$

52

- Markov's inequality: $\operatorname{Pr}(R \geq x) \leq \frac{E(R)}{x}$
- Let's use Markov's inequality in the Hat Check Problem
- Let $R=X_{1}+\cdots+X_{n}$
- each X_{i} is an indicator variable for ith man getting his hat.
- By Markov's inequalit, $\operatorname{Pr}(R \geq k) \leq \frac{E(R)}{k}=\frac{1}{k}$.
- But that's a pretty weak bound!
\quad - Probability that everybody gets their hat is $\operatorname{Pr}(R \geq n) \leq \frac{1}{n}$ by Markov's inequality
- However, we can calculate that it is only $\frac{1}{n!}$

54

55

Independent random variables

- Similar to independent events:
- Random variables X, Y are independent iff
$\forall r_{1}, r_{2} \in \mathbb{R} \quad \operatorname{Pr}\left(X=r_{1} \wedge Y=r_{2}\right)=\operatorname{Pr}\left(X=r_{1}\right) \cdot \operatorname{Pr}\left(Y=r_{2}\right)$
- Example: Suppose a pair of fair dice is thrown, with
X_{1} : number on the first die, X_{2} : number on the second die, Y : total amount
- Then $\operatorname{Pr}\left(X_{1}=i \wedge X_{2}=j\right)=\operatorname{Pr}\left(X_{1}=i\right) \cdot \operatorname{Pr}\left(X_{2}=j\right)=\frac{1}{36}$ for all $i, j \in\{1,2,3,4,5,6\}$ which are the only values X_{1} and X_{2} take. So X_{1} and X_{2} are independent.
- But X_{1} and Y are not independent: $\operatorname{Pr}\left(X_{1}=1 \wedge Y=12\right)=0$, whereas
$\operatorname{Pr}\left(X_{1}=1\right)=\frac{1}{6}$, and $\operatorname{Pr}(Y=12)=\frac{1}{36}$, so $\operatorname{Pr}\left(X_{1}=1\right) \cdot \operatorname{Pr}(Y=12)=\frac{1}{216} \neq 0$.

57
58

Variance of Bernoulli trials

- When random variables X, Y are independent, then
$-E(X Y)=E(X) \cdot E(Y)$
$-\mathrm{V}(X+Y)=V(X)+V(Y)$
- With this, we can calculate the variance of the number of successes in n Bernoulli trials where in each trial the probability of success is p.
- For a single trial: let $X=1$ iff success, $X=0$ iff failure.
- Then $E(X)=p, E\left(X^{2}\right)=p$, so $V(X)=E\left(X^{2}\right)-(E(X))^{2}=p-p^{2}=p(1-p)$
- Let $X_{1} \ldots X_{n}$ be indicator variables so that $X_{i}=1$ iff $i^{\text {th }}$ trial is a success
- They are independent, so $V\left(X_{1}+\cdots+X_{n}\right)=\sum_{i=1}^{n} V\left(X_{i}\right)=n p(1-p)$

Example: variance in the hat check problem.

- Let $\mathrm{R}=X_{1}+\cdots+X_{n}$ for indicator variables X_{i} : man i gets his hat.
$-E(R)=1$.
$-E\left(R^{2}\right)=E\left(\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right)=E\left(\sum_{i=1}^{n} X_{i}^{2}+\sum_{i=1}^{n} \sum_{\substack{j=1, j \neq i}}^{n} X_{i} X_{j}\right)=E\left(\sum_{i=1}^{n} X_{i}^{2}\right)+E\left(\sum_{i=1}^{n} \sum_{\substack{j=1, j \neq i}}^{n} X_{i} X_{j}\right)$
$-E\left(X_{i}^{2}\right)=1^{2} \cdot \frac{1}{n}=\frac{1}{n}$, so $E\left(\sum_{i=1}^{n} X_{i}^{2}\right)=\sum_{i=1}^{n} E\left(X_{i}^{2}\right)=1$
$-E\left(X_{i} X_{j}\right)=\frac{1}{n(n-1)}, \quad$ so $E\left(\sum_{i=1}^{n} \sum_{\substack{j=1, j \neq i}}^{n} X_{i} X_{j}\right)=\left(n^{2}-n\right) \cdot \frac{1}{n(n-1)}=1$
- $\left.\operatorname{So} \mathrm{E}\left(\mathrm{R}^{2}\right)=E\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right)=1+1=2$.

Finally, $V(R)=E\left(R^{2}\right)-(E(R))^{2}=2-(1)^{2}=1$.

56

Temenecaton ouze

- Imagine that your friend is a project manager, and her - Suppose this is the graph of the eam consist of great programmers - if only she could get them to stop fighting among each other! CONFLICT relation for a group. - She decides to split them in two smaller teams - To minimize fighting within each team.
- She knows who fights with whom (the "CONFLICT elation"), but how can she do the splitting?
- And is it possible at all to eliminate at least half
the conflicts? If not, why bother...
- Do you think it is possible to split any group into two teams
- to eliminate all conflicts?
- How about eliminating half the conflicts?
- How would you do the splitting?

Here, lines are double-direction arrows, since CONFLICT is symmetric

